首页> 外文期刊>Applied Artificial Intelligence >A COMBINATION OF SUPPORT VECTOR MACHINE AND k-NEAREST NEIGHBORS FOR MACHINE FAULT DETECTION
【24h】

A COMBINATION OF SUPPORT VECTOR MACHINE AND k-NEAREST NEIGHBORS FOR MACHINE FAULT DETECTION

机译:支持向量机与k近邻法相结合的机械故障检测

获取原文
获取原文并翻译 | 示例

摘要

This article jrresenls a combination of support, vector machine (SVM) and h-nearesl neighbor (k-NN) to monitor rotational machines using vibrational data,. The system is used as triage for human analysis and, thus, a, very low false negative rate is more important than high accuracy. Data are classified using a, standard SVM, but for data within the SVM margin, where misclassi-ficalions are more like, a, k-NN is used to reduce the false negative rale. Using data from a. month of operations of a, predictive maintenance company, the system achieved a zero false negative rate and accuracy ranging from 75% to 84% for different, machine types such as induction motors, gears, and rolling-element bearings.
机译:本文将支持,向量机(SVM)和h-nearesl邻居(k-NN)结合起来使用振动数据来监视旋转机械。该系统用作人类分析的分类,因此,极低的假阴性率比高精度更为重要。数据使用标准SVM进行分类,但对于SVM裕度内的数据(误分类更像是),使用k-NN减少假负规则。使用来自在一家预测性维护公司的一个月的运营中,该系统针对不同类型的机器(例如感应电动机,齿轮和滚动轴承)实现了零误报率和准确度,范围从75%到84%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号