首页> 外文期刊>Applied Artificial Intelligence >An improved PSO algorithm with genetic and neighborhood-based diversity operators for the job shop scheduling problem
【24h】

An improved PSO algorithm with genetic and neighborhood-based diversity operators for the job shop scheduling problem

机译:带有遗传和邻域多样性算子的改进PSO算法解决车间调度问题

获取原文
获取原文并翻译 | 示例

摘要

The job shop scheduling problem (JSSP) is an important NP-hard practical scheduling problem that has various applications in the fields of optimization and production engineering. In this paper an effective scheduling method based on particle swarm optimization (PSO) for the minimum makespan problem of the JSSP is proposed. New variants of the standard PSO operators are introduced to adapt the velocity and position update rules to the discrete solution space of the JSSP. The proposed algorithm is improved by incorporating two neighborhood-based operators to improve population diversity and to avoid early convergence to local optima. First, the diversity enhancement operator tends to improve the population diversity by relocating neighboring particles to avoid premature clustering and to achieve broader exploration of the solution space. This is achieved by enforcing a circular neighboring area around each particle if the population diversity falls beneath the adaptable diversity threshold. The adaptive threshold is utilized to regulate the population diversity throughout the different stages of the search process. Second, the local search operator based on critical path analysis is used to perform local exploitation in the neighboring area of the best particles. Variants of the genetic well-known operators selection and crossover are incorporated to evolve stagnated particles in the swarm. The proposed method is evaluated using a collection of 123 well-studied benchmarks. Experimental results validate the effectiveness of the proposed method in producing excellent solutions that are robust and competitive to recent state-of-the-art heuristic-based algorithms reported in literature for nearly all of the tested instances.
机译:作业车间调度问题(JSSP)是一个重要的NP难题实用调度问题,在优化和生产工程领域具有多种应用。提出了一种基于粒子群算法的最小调度问题的有效调度方法。引入了标准PSO运算符的新变体,以使速度和位置更新规则适应JSSP的离散解决方案空间。通过合并两个基于邻域的算子来改善种群多样性并避免尽早收敛到局部最优,从而改进了所提出的算法。首先,多样性增强算子倾向于通过重新放置相邻粒子来避免总体聚类,从而提高种群多样性,从而实现对解空间的更广泛探索。如果种群多样性低于可适应的多样性阈值,可通过在每个粒子周围强制形成一个圆形的相邻区域来实现。自适应阈值用于在整个搜索过程的不同阶段调节种群多样性。其次,基于关键路径分析的本地搜索运算符用于在最佳粒子的相邻区域中执行本地开发。整合了遗传学著名的操作员选择和交叉的变体,以在群中进化出停滞的粒子。所建议的方法是使用123个经过严格研究的基准进行评估的。实验结果验证了所提出方法在产生出色解决方案方面的有效性,该解决方案对于文献中针对几乎所有测试实例的最新基于启发式算法的最新技术均具有强大的竞争力。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2018年第6期|433-462|共30页
  • 作者

    Abdel-Kader Rehab F.;

  • 作者单位

    Port Said Univ, Fac Engn, Elect Engn Dept, Port Fouad 42523, Port Said, Egypt;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号