首页> 外文期刊>Applied Artificial Intelligence >Development and Evaluation of a Fuzzy Inference System and a Neuro-Fuzzy Inference System for Grading Apple Quality
【24h】

Development and Evaluation of a Fuzzy Inference System and a Neuro-Fuzzy Inference System for Grading Apple Quality

机译:苹果品质分级的模糊推理系统和神经模糊推理系统的开发与评估

获取原文
获取原文并翻译 | 示例

摘要

In this research work, a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) were developed to classify apple total quality based on some fruit quality properties, i.e., fruit mass, flesh firmness, soluble solids content and skin color. The knowledge from experts was used to construct the FIS in order to be able to efficiently categorize the total quality. The historical data was used to construct an ANFIS model, which uses rules extracted from data to classify the apple total quality. The innovative points of this work are (i) a clear presentation of fruit quality after aggregating four quality parameters by developing a FIS, which is based on experts' knowledge and next an ANFIS based on data, and (ii) the classification of apples based on the above quality parameters. The quality of apples was graded in five categories: excellent, good, medium, poor and very poor. The apples were also graded by agricultural experts. The FIS model was evaluated at the same orchard for data of three subsequent years (2005, 2006 and 2007) and it showed 83.54%, 92.73% and 96.36% respective average agreements with the results from the human expert, whereas the ANFIS provided a lower accuracy on prediction. The evaluation showed the superiority of the proposed expert-based approach using fuzzy sets and fuzzy logic.
机译:在这项研究工作中,开发了模糊推理系统(FIS)和自适应神经模糊推理系统(ANFIS)以根据某些水果品质特性(例如,水果质量,果肉硬度,可溶性固形物含量和皮肤)对苹果总品质进行分类。颜色。来自专家的知识用于构建FIS,以便能够有效地对总体质量进行分类。历史数据用于构建ANFIS模型,该模型使用从数据中提取的规则对苹果的总体品质进行分类。这项工作的创新点是:(i)通过开发基于专家知识的FIS,然后通过基于数据的ANFIS,开发出四个质量参数,清晰地展示了水果质量,以及(ii)基于苹果的分类以上质量参数。苹果的质量分为五个类别:优,良,中,差和极差。苹果也由农业专家分级。在同一果园对FIS模型进行了评估,以获取随后三年(2005年,2006年和2007年)的数据,该模型显示与人类专家的结果分别具有83.54%,92.73%和96.36%的平均一致性,而ANFIS则提供了较低的平均值预测准确性。评估显示了使用模糊集和模糊逻辑提出的基于专家的方法的优越性。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2018年第3期|253-280|共28页
  • 作者单位

    Univ Appl Sci TEI Thessaly, Dept Elect Engn, Larisa, Greece;

    Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Magnisia, Greece;

    Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Magnisia, Greece;

    Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Magnisia, Greece;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号