首页> 外文期刊>Applied and Computational Harmonic Analysis >Compressed sensing with local structure: Uniform recovery guarantees for the sparsity in levels class
【24h】

Compressed sensing with local structure: Uniform recovery guarantees for the sparsity in levels class

机译:用局部结构压缩感应:均匀恢复保证级别级别的稀疏性

获取原文
获取原文并翻译 | 示例

摘要

In compressed sensing, it is often desirable to consider signals possessing additional structure beyond sparsity. One such structured signal model - which forms the focus of this paper - is the local sparsity in levels class. This class has recently found applications in problems such as compressive imaging, multi-sensor acquisition systems and sparse regularization in inverse problems. In this paper we present uniform recovery guarantees for this class when the measurement matrix corresponds to a subsampled isometry. We do this by establishing a variant of the standard restricted isometry property for sparse in levels vectors, known as the restricted isometry property in levels. Interestingly, besides the usual log factors, our uniform recovery guarantees are simpler and less stringent than existing nonuniform recovery guarantees. For the particular case of discrete Fourier sampling with Haar wavelet sparsity, a corollary of our main theorem yields a new recovery guarantee which improves over the current state-of-the-art. (C) 2017 Elsevier Inc. All rights reserved.
机译:在压缩感测中,通常希望考虑具有超越稀疏性的额外结构的信号。一种这种结构化信号模型 - 形成本文的焦点 - 是级别类别的局部稀疏性。此类最近发现了在诸如压缩成像,多传感器采集系统和循环中的逆问题等问题中的应用。在本文中,当测量矩阵对应于限制的等距时,我们为该类呈现统一的恢复保证。我们通过建立标准受限制的等距特性的变体来实现这一点,以稀疏在水平载体中稀疏,称为水平中的受限制的等距特性。有趣的是,除了通常的日志因素之外,我们的统一恢复保证比现有的非均匀恢复保证更简单,更严格。对于具有哈尔小波稀疏性的离散傅里叶采样的特定情况,我们主要定理的推论产生了一种新的恢复保证,这些恢复保证改善了当前最先进的。 (c)2017年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号