首页> 外文期刊>Applied and Computational Harmonic Analysis >A new hybrid integral representation for frequency domain scattering in layered media
【24h】

A new hybrid integral representation for frequency domain scattering in layered media

机译:分层介质中频域散射的一种新的混合积分表示

获取原文
获取原文并翻译 | 示例

摘要

A variety of problems in acoustic and electromagnetic scattering require the evaluation of impedance or layered media Green's functions. Given a point source located in an unbounded half-space or an infinitely extended layer, Sommerfeld and others showed that Fourier analysis combined with contour integration provides a systematic and broadly effective approach, leading to what is generally referred to as the Sommerfeld integral representation. When either the source or target is at some distance from an infinite boundary, the number of degrees of freedom needed to resolve the scattering response is very modest. When both are near an interface, however, the Sommerfeld integral involves a very large range of integration and its direct application becomes unwieldy. Historically, three schemes have been employed to overcome this difficulty: the method of images, contour deformation, and asymptotic methods of various kinds. None of these methods make use of classical layer potentials in physical space, despite their advantages in terms of adaptive resolution and high-order accuracy. The reason for this is simple: layer potentials are impractical in layered media or halfspace geometries since they require the discretization of an infinite boundary. In this paper, we propose a hybrid method which combines layer potentials (physical-space) on a finite portion of the interface together with a Sommerfeld-type (Fourier) correction. We prove that our method is efficient and rapidly convergent for arbitrarily located sources and targets, and show that the scheme is particularly effective when solving scattering problems for objects which are close to the half-space boundary or even embedded across a layered media interface. (C) 2016 Elsevier Inc. All rights reserved.
机译:声波和电磁波散射中的各种问题都需要评估阻抗或分层介质Green的功能。给定点源位于无边界的半空间或无限扩展的层中,Sommerfeld等人表明傅立叶分析与轮廓积分相结合提供了系统且广泛有效的方法,从而导致通常称为Sommerfeld积分表示。当源或目标与无限边界相距一定距离时,解决散射响应所需的自由度数非常有限。但是,当两者都靠近接口时,Sommerfeld积分涉及很大范围的积分,并且其直接应用变得笨拙。从历史上看,已经采用了三种方案来克服这一难题:图像方法,轮廓变形和各种渐近方法。尽管它们在自适应分辨率和高阶精度方面具有优势,但这些方法都没有利用物理空间中的经典层势。原因很简单:在层状介质或半空间几何结构中,层电位不切实际,因为它们需要离散化无限边界。在本文中,我们提出了一种混合方法,该方法将界面的有限部分上的层电势(物理空间)与Sommerfeld型(Fourier)校正结合在一起。我们证明了我们的方法对于任意定位的源和目标是有效且快速收敛的,并且表明该方案在解决靠近半空间边界甚至嵌入分层媒体接口的对象的散射问题时特别有效。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号