首页> 外文期刊>Applied and Computational Harmonic Analysis >Higher-rank wavelet transforms, ridgelet transforms, and Radon transforms on the space of matrices
【24h】

Higher-rank wavelet transforms, ridgelet transforms, and Radon transforms on the space of matrices

机译:矩阵空间上的高阶小波变换,脊波变换和Radon变换

获取原文
获取原文并翻译 | 示例

摘要

Let M_(n,m) be the space of real n x m matrices which can be identified with the Euclidean space R~(nm). We introduce continuous wavelet transforms on M_(n,m) with a multivalued scaling parameter represented by a positive definite symmetric matrix. These transforms agree with the polar decomposition on M_(n,m) and coincide with classical ones in the rank-one case m = 1. We prove an analog of Calderon's reproducing formula for L~2-functions and obtain explicit inversion formulas for the Riesz potentials and Radon transforms on M_(n,m). We also introduce continuous ridgelet transforms associated to matrix planes in M_(n,m). An inversion formula for these transforms follows from that for the Radon transform. The new approach makes it possible to reconstruct a function on R~(nm) from data on a set of planes of zero measure.
机译:令M_(n,m)是可以用欧几里得空间R〜(nm)标识的实n x m矩阵的空间。我们在M_(n,m)上引入由正定对称矩阵表示的多值缩放参数的连续小波变换。这些变换与M_(n,m)上的极坐标分解相符,并且在秩m等于1的情况下与经典分解相吻合。 M_(n,m)上的Riesz势和Radon变换。我们还介绍了与M_(n,m)中的矩阵平面关联的连续ridgelet变换。这些变换的反演公式遵循Radon变换的反演公式。新方法使得可以根据一组零度量平面上的数据重建R〜(nm)上的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号