首页> 外文期刊>Applied and Computational Harmonic Analysis >Randomly dithered quantization and sigma-delta noise shaping for finite frames
【24h】

Randomly dithered quantization and sigma-delta noise shaping for finite frames

机译:有限帧的随机抖动量化和sigma-delta噪声整形

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this paper is controlling the mean-square reconstruction error induced by applying randomly dithered quantization, a stochastic round-off prescription, to the frame coefficients of a vector in a finite-dimensional Hilbert space. We establish bounds and asymptotics for the mean-square error of dithered quantization with and without sigma-delta noise shaping. The use of a random dither eliminates the need for assuming the white-noise hypothesis to establish these results. Our estimates are valid for a uniform mid-tread quantizer operating in the no-overload regime. For a fixed family of frames obtained from regular sampling of a bounded, differentiable path in the Hilbert space which terminates in the zero vector, the dither-averaged square of the Euclidean reconstruction error is asymptotically inversely proportional to the cubed number of frame vectors. This estimate is uniform in the set of input vectors that do not lead to overload of the quantizer.
机译:本文的主要目的是控制通过对有限维希尔伯特空间中的向量的帧系数应用随机抖动量化(一种随机舍入法则)而引起的均方根重构误差。我们为带有和不带有sigma-delta噪声整形的抖动量化的均方误差建立界限和渐近性。随机抖动的使用消除了假设白噪声假设来建立这些结果的需要。我们的估计对于在无过载情况下运行的统一中频量化器有效。对于从在零向量处终止的希尔伯特空间中有界可微路径的常规采样获得的固定帧族,欧几里德重构误差的抖动平均平方与帧向量的立方数量呈渐近反比例关系。该估计在输入矢量集合中是统一的,不会导致量化器过载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号