首页> 外文期刊>Applied and Computational Harmonic Analysis >Sparse directional image representations using the discrete shearlet transform
【24h】

Sparse directional image representations using the discrete shearlet transform

机译:使用离散Sletlet变换的稀疏方向性图像表示

获取原文
获取原文并翻译 | 示例

摘要

In spite of their remarkable success in signal processing applications, it is now widely acknowledged that traditional wavelets are not very effective in dealing multidimensional signals containing distributed discontinuities such as edges. To overcome this limitation, one has to use basis elements with much higher directional sensitivity and of various shapes, to be able to capture the intrinsic geometrical features of multidimensional phenomena. This paper introduces a new discrete multiscale directional representation called the discrete shearlet transform. This approach, which is based on the shearlet transform, combines the power of multiscale methods with a unique ability to capture the geometry of multidimensional data and is optimally efficient in representing images containing edges. We describe two different methods of implementing the shearlet transform. The numerical experiments presented in this paper demonstrate that the discrete shearlet transform is very competitive in denoising applications both in terms of performance and computational efficiency.
机译:尽管它们在信号处理应用中取得了巨大的成功,但现在人们普遍认为,传统的小波在处理包含诸如边缘之类的不连续性的多维信号方面不是很有效。为了克服这一限制,人们必须使用具有更高方向敏感性和各种形状的基本元素,以便能够捕获多维现象的内在几何特征。本文介绍了一种新的离散多尺度方向表示形式,称为离散小波变换。这种基于剪切波变换的方法将多尺度方法的功能与捕获多维数据的几何形状的独特能力结合在一起,并且在表示包含边缘的图像方面具有最佳的效率。我们描述了两种实现剪切波变换的方法。本文提出的数值实验表明,在性能和计算效率方面,离散剪切波变换在去噪应用中都非常有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号