首页> 外文期刊>Applied and Computational Harmonic Analysis >An adaptive fast direct solver for boundary integral equations in two dimensions
【24h】

An adaptive fast direct solver for boundary integral equations in two dimensions

机译:二维边界积分方程的自适应快速直接求解器

获取原文
获取原文并翻译 | 示例

摘要

We describe an algorithm for the rapid direct solution of linear algebraic systems arising from the discretization of boundary integral equations of potential theory in two dimensions. The algorithm is combined with a scheme that adaptively rearranges the parameterization of the boundary in order to minimize the ranks of the off-diagonal blocks in the discretized operator, thus obviating the need for the user to supply a parameterization r of the boundary for which the distance ||r(s) - r(t)|| between two points on the boundary is related to their corresponding distance |s-f| in the parameter space. The algorithm has an asymptotic complexity of O(Wlog~2 N), where N is the number of nodes in the discretization. The performance of the algorithm is illustrated with several numerical examples.
机译:我们描述了一种用于线性代数系统的快速直接解的算法,该算法是在二维中将势能理论的边界积分方程离散化而产生的。该算法与一种方案相结合,该方案自适应地重新排列边界的参数化,以最小化离散算子中非对角线块的秩,从而避免了用户提供边界参数化r的需要。距离|| r(s)-r(t)||边界上两个点之间的距离与它们对应的距离| s-f |相关在参数空间中。该算法的渐近复杂度为O(Wlog〜2 N),其中N是离散化中的节点数。通过几个数值示例说明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号