首页> 外文期刊>Applied and Computational Harmonic Analysis >The projected GSURE for automatic parameter tuning in iterative shrinkage methods
【24h】

The projected GSURE for automatic parameter tuning in iterative shrinkage methods

机译:用于迭代收缩方法中自动参数调整的预计GSURE

获取原文
获取原文并翻译 | 示例

摘要

Linear inverse problems are very common in signal and image processing. Many algorithms that aim at solving such problems include unknown parameters that need tuning. In this work we focus on optimally selecting such parameters in iterative shrinkage methods for image deblurring and image zooming. Our work uses the projected Generalized Stein Unbiased Risk Estimator (GSURE) for determining the threshold value X and the iterations number K in these algorithms. The proposed parameter selection is shown to handle any degradation operator, including ill-posed and even rectangular ones. This is achieved by using GSURE on the projected expected error. We further propose an efficient greedy parameter setting scheme, that tunes the parameter while iterating without impairing the resulting deblurring performance. Finally, we provide extensive comparisons to conventional methods for parameter selection, showing the superiority of the use of the projected GSURE.
机译:线性逆问题在信号和图像处理中非常普遍。旨在解决此类问题的许多算法包括需要调整的未知参数。在这项工作中,我们专注于在用于图像去模糊和图像缩放的迭代收缩方法中最佳选择此类参数。我们的工作使用投影的广义斯坦因无偏风险估计器(GSURE)确定这些算法中的阈值X和迭代次数K。所示的建议参数选择可处理任何降级算子,包括不适定的算子甚至矩形算子。这是通过对预期的预期误差使用GSURE来实现的。我们进一步提出了一种有效的贪婪参数设置方案,该方案可在迭代时调整参数,而不会影响最终的去模糊性能。最后,我们提供了与常规方法进行参数选择的广泛比较,显示了使用预计的GSURE的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号