首页> 外文期刊>Applied and Computational Harmonic Analysis >Compressive sensing of analog signals using Discrete Prolate Spheroidal Sequences
【24h】

Compressive sensing of analog signals using Discrete Prolate Spheroidal Sequences

机译:使用离散扁球面序列对模拟信号进行压缩感测

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. While often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this paper, we attempt to bridge this gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS's), a collection of functions that trace back to the seminal work by Slepian, Landau, and Pollack on the effects of time-limiting and bandlimiting operations. DPSS's form a highly efficient basis for sampled bandlimited functions; by modulating and merging DPSS bases, we obtain a dictionary that offers high-quality sparse approximations for most sampled multiband signals. This multiband modulated DPSS dictionary can be readily incorporated into the CS framework. We provide theoretical guarantees and practical insight into the use of this dictionary for recovery of sampled multiband signals from compressive measurements.
机译:压缩感测(CS)最近已成为一种框架,可以有效地捕获在适当的基础上稀疏或可压缩的信号。尽管通常是作为替代奈奎斯特速率采样的动机,但在离散的有限维CS框架和获取连续时间信号的问题之间仍然存在差距。在本文中,我们尝试通过利用离散扁球面序列(DPSS)来弥合这种差距,该序列是功能集,可追溯到Slepian,Landau和Pollack对限时和限带操作的影响。 DPSS构成了采样带宽受限功能的高效基础;通过调制和合并DPSS基,我们获得了一个字典,该字典为大多数采样的多频带信号提供了高质量的稀疏近似。这种多频带调制的DPSS词典可以很容易地合并到CS框架中。我们为使用该字典从压缩测量中恢复采样的多频带信号提供了理论保证和实践见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号