首页> 外文期刊>Applied and Computational Harmonic Analysis >Wavelet frame based blind image inpainting
【24h】

Wavelet frame based blind image inpainting

机译:基于小波帧的盲图像修复

获取原文
获取原文并翻译 | 示例

摘要

Image inpainting has been widely used in practice to repair damaged/missing pixels of given images. Most of the existing inpainting techniques require knowing beforehand where those damaged pixels are, either given as a priori or detected by some preprocessing. However, in certain applications, such information neither is available nor can be reliably pre-detected, e.g. removing random-valued impulse noise from images or removing certain scratches from archived photographs. This paper introduces a blind inpainting model to solve this type of problems, i.e., a model of simultaneously identifying and recovering damaged pixels of the given image. A tight frame based regularization approach is developed in this paper for such blind inpainting problems, and the resulted minimization problem is solved by the split Bregman algorithm first proposed by Goldstein and Osher (2009) [1]. The proposed blind inpainting method is applied to various challenging image restoration tasks, including recovering images that are blurry and damaged by scratches and removing image noise mixed with both Gaussian and random-valued impulse noise. The experiments show that our method is compared favorably against many available two-staged methods in these applications.
机译:在实践中,图像修复已广泛用于修复给定图像的损坏/缺失像素。大多数现有的修复技术都需要事先知道这些损坏的像素在哪里,或者先验地给出,或者通过某种预处理来检测。但是,在某些应用中,这样的信息既不可用也不可靠地被预先检测到,例如。从图像中删除随机值的脉冲噪声,或从存档的照片中删除某些划痕。本文介绍了一种盲目的修复模型来解决此类问题,即同时识别和恢复给定图像的损坏像素的模型。针对此类盲修复问题,本文开发了一种基于紧框架的正则化方法,并通过由Goldstein和Osher(2009)首次提出的split Bregman算法解决了最小化问题。提出的盲修复方法适用于各种具有挑战性的图像恢复任务,包括恢复模糊和被划痕损坏的图像,以及消除混合有高斯和随机值脉冲噪声的图像噪声。实验表明,在这些应用中,我们的方法与许多可用的两阶段方法相比具有优势。

著录项

  • 来源
    《Applied and Computational Harmonic Analysis》 |2012年第2期|p.268-279|共12页
  • 作者单位

    Department of Mathematics, University of California, San Diego, 9500 Cilman Drive, La Jolla, CA 92093-0112, United States;

    Department of Mathematics, National University of Singapore, 117542 Singapore, Singapore;

    Department of Mathematics, National University of Singapore, 117542 Singapore, Singapore;

    Department of Mathematics, National University of Singapore, 117542 Singapore, Singapore;

    Center for Wavelets, Approx. and Info. Proc, National University of Singapore, 117542 Singapore, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    image inpainting; sparse approximation; split bregman algorithm; wavelet frame;

    机译:图像修补;稀疏近似分裂bregman算法;小波框架;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号