首页> 外文期刊>Applied and Computational Harmonic Analysis >An extension of Mercer theorem to matrix-valued measurable kernels
【24h】

An extension of Mercer theorem to matrix-valued measurable kernels

机译:将Mercer定理扩展到矩阵值可测量核

获取原文
获取原文并翻译 | 示例

摘要

We extend the classical Mercer theorem to reproducing kernel Hilbert spaces whose elements are functions from a measurable space X into C~n. Given a finite measure μ on X, we represent the reproducing kernel K as a convergent series in terms of the eigenfunctions of a suitable compact operator depending on K and μ. Our result holds under the mild assumption that K is measurable and the associated Hilbert space is separable. Furthermore, we show that X has a natural second countable topology with respect to which the eigenfunctions are continuous and such that the series representing K uniformly converges to K on compact subsets of X × X, provided that the support of μ is X.
机译:我们将经典的Mercer定理扩展到再现核Hilbert空间,其元素是从可测量空间X到C〜n的函数。给定X上的一个有限度量μ,我们根据依赖于K和μ的紧凑算子的本征函数,将再生核K表示为收敛级数。我们的结果在一个温和的假设下成立,即K是可测量的,相关的希尔伯特空间是可分离的。此外,我们证明X具有自然的第二可数拓扑,其特征函数相对于第二个可数拓扑是连续的,并且假设μ为X,表示K的级数在X×X的紧子集上均匀收敛到K。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号