首页> 外文期刊>Applied and Computational Harmonic Analysis >Convergence of a data-driven time-frequency analysis method
【24h】

Convergence of a data-driven time-frequency analysis method

机译:数据驱动的时频分析方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

In a recent paper, Hou and Shi introduced a new adaptive data analysis method to analyze nonlinear and non-stationary data. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t) cos(θ(t))}, where a ∈ V(θ), V(θ) consists of the functions that are less oscillatory than cos(θ(t)) and θ' ≥0. This problem was formulated as a nonlinear L~0 optimization problem and an iterative nonlinear matching pursuit method was proposed to solve this nonlinear optimization problem. In this paper, we prove the convergence of this nonlinear matching pursuit method under some scale separation assumptions on the signal. We consider both well-resolved and poorly sampled signals, as well as signals with noise. In the case without noise, we prove that our method gives exact recovery of the original signal.
机译:Hou和Shi在最近的论文中介绍了一种新的自适应数据分析方法,用于分析非线性和非平稳数据。主要思想是在由形式为{a(t)cos(θ(t))}的固有模式函数组成的最大可能字典中寻找多尺度数据的最稀疏表示,其中a∈V(θ),V( θ)由比cos(θ(t))震荡且θ'≥0的函数组成。将该问题表述为一个非线性的L〜0优化问题,并提出了一种迭代的非线性匹配追踪方法来解决该非线性优化问题。在本文中,我们证明了在信号的一些尺度分离假设下这种非线性匹配追踪方法的收敛性。我们认为信号解析度高,采样率差,以及带有噪声的信号。在没有噪声的情况下,我们证明了我们的方法能够准确恢复原始信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号