首页> 外文期刊>Applied and Computational Harmonic Analysis >Solving support vector machines in reproducing kernel Banach spaces with positive definite functions
【24h】

Solving support vector machines in reproducing kernel Banach spaces with positive definite functions

机译:用正定函数求解支持Banach空间的支持向量机

获取原文
获取原文并翻译 | 示例

摘要

In this paper we solve support vector machines in reproducing kernel Banach spaces (RKBSs) instead of the traditional methods in reproducing kernel Hilbert spaces (RKHSs). Using the orthogonality of semi-inner-products of RKBSs, we can obtain the finite-dimensional representations of the dual (normalized-duality-mapping) elements of support vector machine solutions. In addition, we can use Fourier transform techniques to introduce the concept of reproduction in a generalized native space such that it becomes a reproducing kernel Banach space, which can even be embedded into Sobolev spaces. Moreover, its reproducing kernel is associated with a positive definite function. The representations of the optimal solutions of support vector machines (regularized empirical risks) in these reproducing kernel Banach spaces are formulated explicitly and finite-dimensionally in terms of the positive definite functions, and their finite numbers of suitable parameters can be computed by the fixed point iteration. We also give some typical examples of reproducing kernel Banach spaces induced by Matern functions (Sobolev splines) such that their support vector machine solutions even are computable efficiently. Moreover, each of their reproducing bases includes information from multiple training data points. These kernel-based algorithms give a fresh numerical tool for support vector classifiers.
机译:在本文中,我们解决了在再现内核Banach空间(RKBS)中的支持向量机,而不是在再现内核Hilbert空间(RKHSs)中的传统方法。利用RKBS的半内积的正交性,我们可以获得支持向量机解的对偶(标准化对偶映射)元素的有限维表示。此外,我们可以使用傅立叶变换技术将复制的概念引入广义本机空间中,从而使其成为可复制的内核Banach空间,甚至可以将其嵌入Sobolev空间中。此外,其复制内核与正定函数相关联。这些复制核Banach空间中支持向量机(正则经验风险)的最佳解的表示形式通过正定函数明确地和有限维地表示,并且可以通过不动点计算出它们的有限数量的合适参数。迭代。我们还给出了一些典型示例,这些示例再现了由Matern函数(Sobolev样条)引起的Banach空间,从而甚至可以有效地计算它们的支持向量机解决方案。而且,它们的每个再现基础都包括来自多个训练数据点的信息。这些基于内核的算法为支持向量分类器提供了新的数值工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号