首页> 外文期刊>Applied and Computational Harmonic Analysis >Image restoration: A wavelet frame based model for piecewise smooth functions and beyond
【24h】

Image restoration: A wavelet frame based model for piecewise smooth functions and beyond

机译:图像恢复:基于小波框架的分段平滑函数及其他模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new wavelet frame based image restoration model that explicitly treats images as piecewise smooth functions. It estimates both the image to be restored and its singularity set. It can well protect singularities, which are important image features, and provide enough regularization in smooth regions at the same time. This model penalizes the.e2-norm of the wavelet frame coefficients away from the singularity set, while penalizes the.e1-norm of the coefficients on the singularity set. This model explicitly models images as piecewise smooth functions with a general smoothness regularization and characterizes rather general singularity set, which includes both jump discontinuities and jumps after certain orders of differentiations. As we know, all types of singularities are important image features and need to be recovered. Furthermore, the singularity set can be robustly estimated by wavelet frame transform during the image recovery procedure, which makes our model easy to solve numerically; hence, the model is insensitive to the estimation of the singularity set.
机译:在本文中,我们提出了一种新的基于小波帧的图像恢复模型,该模型将图像视为分段平滑函数。它估计要还原的映像及其奇异集。它可以很好地保护奇异点,这是重要的图像特征,并且可以同时在平滑区域中提供足够的正则化。该模型对奇异集上的小波框架系数的e2范数进行惩罚,而对奇异集上的系数的e1范数进行惩罚。该模型显式地将图像建模为具有一般平滑度正则化的分段平滑函数,并描述了相当一般的奇点集,该奇点集包括跳跃间断点和某些微分阶次之后的跳跃。众所周知,所有类型的奇点都是重要的图像特征,需要加以恢复。此外,在图像恢复过程中,可以通过小波帧变换可靠地估计奇异集,这使得我们的模型易于数值求解。因此,该模型对奇异集的估计不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号