首页> 外文期刊>Image Processing, IET >Coupled image restoration model with non-convex non-smooth ℓp wavelet frame and total variation regularisation
【24h】

Coupled image restoration model with non-convex non-smooth ℓp wavelet frame and total variation regularisation

机译:非凸非光滑ℓp小波框架与总变化正则化的图像复原模型

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors propose a coupled analysis-based image restoration model regularised by total variation(TV) and wavelet frame coefficients penalty terms imposed on non-convex non-smooth ℓp-norm (0<;p<;1). The highlighted contributions to this model are: (i) the intrinsic quality of preserving piecewise smooth areas of TV and the amazing sparse representing capability of the wavelet frame to the underlying image alternately interact, will lead to better experimental results; and (ii) the non-convex non-smooth ℓp-norm (0<;p<;1) regularisation is more amenable to the marginal distributions of gradients of natural images than ℓ1-norm, which will suppress staircase effects more effectively. By alternative direction method of multipliers, the objective function is first divided into three subproblems that are solved by the fast iterative shrinkage-thresholding algorithm (FISTA) and the generalised iterated shrinkage algorithm (GISA) respectively. The GISA solution is computationally more efficient than a diversity of algorithms such as iteratively reweighted L1( IRL1), iteratively reweighted least squares (IRLS) restricted to solve non-convex non-decreasing function; and the FISTA solution also has a faster convergence rate than iterative shrinkage-thresholding algorithm. The extensive experimental results show that the proposed model exhibit an amazing image restoration capability.
机译:在这项研究中,作者提出了一个基于耦合分析的图像恢复模型,该模型由总变化(TV)和施加在非凸,非光滑ℓp范数(0 <; p <; 1)上的小波帧系数惩罚项规范化。该模型的突出贡献是:(i)保留电视分段平滑区域的内在质量和小波帧与基础图像交替交互的惊人稀疏表示能力,将带来更好的实验结果; (ii)非凸非光滑ℓp范数(0 <; p <; 1)正则化比ℓ1-范数更适合自然图像的梯度边缘分布,这将更有效地抑制阶梯效应。通过乘数的交替方向法,首先将目标函数分为三个子问题,分别由快速迭代收缩阈值算法(FISTA)和广义迭代收缩算法(GISA)解决。 GISA解决方案的计算效率要高于多种算法,例如迭代加权的L1(IRL1),迭代加权的最小二乘法(IRLS),它们只能解决非凸不减函数; FISTA解决方案的收敛速度也比迭代收缩阈值算法快。广泛的实验结果表明,提出的模型具有惊人的图像恢复能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号