首页> 外文期刊>Applications of Mathematics >STABLE SOLUTIONS TO HOMOGENEOUS DIFFERENCE-DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS: ANALYTICAL INSTRUMENTS AND AN APPLICATION TO MONETARY THEORY
【24h】

STABLE SOLUTIONS TO HOMOGENEOUS DIFFERENCE-DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS: ANALYTICAL INSTRUMENTS AND AN APPLICATION TO MONETARY THEORY

机译:具有常数系数的齐次微分方程的稳定解:分析仪器及其在货币理论中的应用

获取原文
获取原文并翻译 | 示例

摘要

In economic systems, reactions to external shocks often come with a delay. On the other hand, agents try to anticipate future developments. Both can lead to difference-differential equations with an advancing argument. These are more difficult to handle than either difference or differential equations, but they have the merit of added realism and increased credibility. This paper generalizes a model from monetary economics by von Kalckreuth and Schroder. Working out its stability properties, we present a general method for determining the stability of any solution to a homogeneous linear difference-differential equation with constant coefficients and advancing arguments.
机译:在经济体系中,对外部冲击的反应通常会有所延迟。另一方面,代理商试图预测未来的发展。两者都可以导致带有超前参数的微分方程。这些比差分或微分方程更难处理,但是它们具有增加真实性和增加可信度的优点。本文从von Kalckreuth和Schroder的货币经济学中概括了一个模型。计算其稳定性,我们提出了一种通用方法,用于确定具有常数系数和自变量的齐次线性差分-微分方程的任何解的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号