首页> 外文期刊>Applications of Mathematics >SPARSE FINITE ELEMENT METHODS FOR OPERATOR EQUATIONS WITH STOCHASTIC DATA
【24h】

SPARSE FINITE ELEMENT METHODS FOR OPERATOR EQUATIONS WITH STOCHASTIC DATA

机译:带有随机数据的算子方程的稀疏有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Let A: Ⅴ → Ⅴ' be a strongly elliptic operator on a d-dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation Au = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments M~1 u ∈ Ⅴ, M~2u ∈ Ⅴ directX Ⅴ, ..., M~ku ∈ Ⅴ directX ... directX Ⅴ of the solution. We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment M~k u for k ≥ 1. The key tool in both algorithms is a "sparse tensor product" space for the approximation of M~k u with O(N(log N) ) degrees of freedom, instead of N~k degrees of freedom for the full tensor product FEM space. A sparse Monte-Carlo FEM with M samples (i.e., deterministic solver) is proved to yield approximations to M~k u with a work of O(MN(log N)~(k-1)) operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom N and the number M of samples. The deterministic FEM is based on deterministic equations for M~ku in D~k is contained in R~(kd). Their Galerkin approximation using sparse tensor products of the FE spaces in D allows approximation of M~ku with O(N(log N)~(k-1)) degrees of freedom converging at an optimal rate (up to logs). For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for M~ku with at most O(N(log N)~(k+1)) operations.
机译:设A:Ⅴ→Ⅴ'是d维流形D上的强椭圆算子(也可以使用多面体或多面体的边界)。考虑具有随机数据f的算子方程Au = f。计算的目标是平均场和解的较高矩M〜1 u∈Ⅴ,M〜2u∈ⅤDirectXⅤ,...,M〜ku∈ⅤDirectX ... directXⅤ。我们使用具有分层基础和N个自由度的FEM离散平均场问题。对于k≥1的矩M〜ku,我们提出了一种蒙特卡洛算法和确定性算法。这两种算法的关键工具是O(N)逼近M〜ku的“稀疏张量积”空间。 (log N))自由度,而不是整个张量积FEM空间的N〜k自由度。用O(MN(logN)〜(k-1))个运算证明了带有M个样本的稀疏蒙特卡洛有限元法(即确定性求解器)。示出了关于有限元自由度N和样本数量M的解以最优速率收敛。确定性有限元法基于确定性方程,其中R〜(kd)中包含D〜k中的M〜ku。利用D中FE空间的稀疏张量积进行的Galerkin逼近可以使M〜ku的O(N(log N)〜(k-1))自由度以最佳速率收敛(直到logs)。对于非本地算子,使用算子的小波压缩。线性系统通过多级预处理进行迭代求解。这产生了最多具有O(N(log N)〜(k + 1))个运算的M_ku的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号