首页> 外文期刊>Applicable Algebra in Engineering, Communication and Computing >Expected term bases for generic multivariate Hermite interpolation
【24h】

Expected term bases for generic multivariate Hermite interpolation

机译:通用多元Hermite插值的期望术语库

获取原文
获取原文并翻译 | 示例

摘要

The main goal of the paper is to find an effective estimation for the minimal number of points in ${mathbb{K}}^{2}$ in general position for which the basis for Hermite interpolation consists of the first ? terms (with respect to total degree ordering). As a result we prove that the space of plane curves of degree at most d having singularities of multiplicity ≤ m in general position has the expected dimension if the number of low order singularities (of multiplicity k ≤ 12) is greater then some r(m, k). Additionally, the upper bounds for r(m, k) are given.
机译:本文的主要目的是为一般位置的$ {mathbb {K}} ^ {2} $中的最小点数找到有效的估计,而Hermite插值的基础是第一个?。术语(关于总学位排序)。结果证明,如果低阶奇异点的数目(复数k≤12)的数量大于r(m,则在一般位置具有多重度≤m的奇异度最多为d的平面曲线的空间具有预期的尺寸,k)。此外,给出了r(m,k)的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号