首页> 外文期刊>Applicable Algebra in Engineering, Communication and Computing >Highly nonlinear balanced S-boxes with improved bound on unrestricted and generalized nonlinearity
【24h】

Highly nonlinear balanced S-boxes with improved bound on unrestricted and generalized nonlinearity

机译:高度非线性的平衡S盒,具有不受限制和广义非线性的改进边界

获取原文
获取原文并翻译 | 示例

摘要

We construct two classes of balanced S-boxes with high nonlinearity 2 n-1?2(n-1)/2 for n odd. From known results, it can be deduced that for any S-box which has nonlinearity 2 n-1?2(n-1)/2, the unrestricted nonlinearity is lower bounded by 2 n-1?2(m+n-1)/2 while the generalized nonlinearity is lower bounded by 2 n-1?(2 m ?1)2(n-1)/2. We prove that the lower bound on the unrestricted nonlinearity of both our S-box constructions can be increased to 2 n-1?2(m+n)/2-1. For the first class of S-box, the lower bound on generalized nonlinearity can be increased to 2 n-1?2(n-1)/2+m-1. For the second class, the generalized nonlinearity is proven to be exactly 2 n-1?2(m+n)/2-1, which is much higher than the lower bound for our first construction. The first class of S-boxes have low maximum differential while the second class corresponds to GMW sequences, whose algebraic structure allows us to construct a larger family of S-boxes. Moreover, both classes of S-boxes can attain high algebraic degree. We also compare our constructions with some known functions with high unrestricted and/or generalized nonlinearity.
机译:对于n个奇数,我们构造了两类具有高非线性2 n-1 ?2(n-1)/ 2 的平衡S盒。从已知结果可以推断出,对于任何具有非线性2 n-1 ?2(n-1)/ 2 的S-box,无限制的非线性度都以2 n-1为下界?2(m + n-1)/ 2 ,而广义非线性则由2 n-1 ?(2 m ?1)2(n- 1)/ 2 。我们证明,我们两个S-box结构的无限制非线性的下限可以增加到2 n-1 ?2(m + n)/ 2-1 。对于第一类S-box,广义非线性的下界可以增加到2 n-1 ?2(n-1)/ 2 + m-1 。对于第二类,广义非线性被证明恰好是2 n-1 ?2(m + n)/ 2-1 ,远高于我们第一种构造的下界。第一类S盒具有较低的最大差分,而第二类对应于GMW序列,其代数结构使我们能够构建更大的S盒族。此外,两类S​​盒都可以达到较高的代数程度。我们还比较了我们的构造与一些已知函数的高度无限制和/或广义非线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号