首页> 外文期刊>Applicable Algebra in Engineering, Communication and Computing >A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases
【24h】

A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases

机译:对合和δ正则性的组合方法II:具有pommaret基的多项式模块的结构分析

获取原文

摘要

Much of the existing literature on involutive bases concentrates on their efficient algorithmic construction. By contrast, we are here more concerned with their structural properties. Pommaret bases are particularly useful in this respect. We show how they may be applied for determining the Krull and the projective dimension, respectively, and the depth of a polynomial module. We use these results for simple proofs of Hironaka’s criterion for Cohen–Macaulay modules and of the graded form of the Auslander–Buchsbaum formula, respectively. Special emphasis is put on the syzygy theory of Pommaret bases and its use for the construction of a free resolution which is generically minimal for componentwise linear modules. In the monomial case, the arising complex always possesses the structure of a differential algebra and it is possible to derive an explicit formula for the differential. Here a minimal resolution is obtained, if and only if a stable module is treated. These observations generalise results by Eliahou and Kervaire. Using our resolution, we show that the degree of the Pommaret basis with respect to the degree reverse lexicographic term order is always the Castelnuovo–Mumford regularity. This approach leads to new proofs for a number of characterisations of this invariant proposed in the literature. This includes in particular the criteria of Bayer/Stillman and Eisenbud/Goto, respectively. We also relate Pommaret bases to the recent work of Bermejo/Gimenez and Trung on computing the Castelnuovo–Mumford regularity via saturations. It is well-known that Pommaret bases do not always exist but only in so-called δ-regular coordinates. We show that several classical results in commutative algebra, holding only generically, are true for these special coordinates. In particular, they are related to regular sequences, independent sets of variables, saturations and Noether normalisations. Many properties of the generic initial ideal hold also for the leading ideal of the Pommaret basis with respect to the degree reverse lexicographic term order, although the latter one is in general not Borel-fixed. We present a deterministic approach for the effective construction of δ-regular coordinates that is more efficient than all methods proposed in the literature so far.
机译:现有的对合基础的许多文献都集中在它们的有效算法构造上。相比之下,我们在这里更加关注它们的结构特性。 Pommaret基地在这方面特别有用。我们展示了如何将它们分别用于确定Krull和投影维以及多项式模块的深度。我们用这些结果分别简单证明了Hironaka的Cohen–Macaulay模数准则和Auslander–Buchsbaum公式的分级形式。特别强调Pommaret碱基的酶理论及其在构建自由分辨率方面的用途,该自由分辨率通常对于分量线性模块而言是最小的。在单项式情况下,出现的复数始终具有微分代数的结构,并且可以导出微分的显式。在且仅当处理了稳定模块时,才能获得最小分辨率。这些观察结果概括了Eliahou和Kervaire的结果。使用我们的分辨率,我们证明Pommaret基础相对于逆字典词典术语顺序的度始终是Castelnuovo-Mumford正则性。这种方法为文献中提出的该不变式的许多特征提供了新的证明。这尤其分别包括Bayer / Stillman和Eisenbud / Goto的标准。我们还将Pommaret基础与Bermejo / Gimenez和Trung在通过饱和度计算Castelnuovo-Mumford正则性的最新工作中联系起来。众所周知,Pommaret基并不总是存在,而仅存在于所谓的δ正则坐标中。我们证明了交换代数中的几个经典结果(仅通用)对这些特殊坐标是正确的。特别地,它们与规则序列,变量的独立集合,饱和度和Noether归一化有关。通用初始理想的许多属性也适用于Pommaret基础的反向理想词典顺序的理想,尽管后者通常不是Borel固定的。我们提出了一种确定性的方法来有效构造δ-正则坐标,它比到目前为止在文献中提出的所有方法都更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号