首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Comments on “On solving first-kind integral equation usingwavelets on a bounded interval” [and reply]
【24h】

Comments on “On solving first-kind integral equation usingwavelets on a bounded interval” [and reply]

机译:关于“关于使用有界区间上的小波求解一类积分方程”的评论[和回复]

获取原文
获取原文并翻译 | 示例

摘要

The author comments that the paper of Goswami, Chan and Chui (see ibid., vol.43, no.6, p.614, 1995) presented an interesting application of semi-orthogonal wavelets on a bounded interval to a numerical solution of first-kind integral equations. The major merit of the wavelet-based methods is to reduce an integral operator into a sparse matrix which is extremely valuable for large-scale problems. Compared with the discussion in the theoretical portion of the paper, the explanation of the numerical results is somewhat short and insufficient. In particular, examples for the demonstration of the sparse matrix lack insight and conviction. Goswami et al. reply that apparently Dr. Wang has not understood the main objective of their paper. The contribution of the paper should be seen not through one specific example, but rather in its totality. The method of moments (MoM) is well known and so is the fact that for a specific example discussed in our paper, namely TM scattering from an infinitely long PEC circular cylinder with small radius, 11 (or even less) basis functions will be sufficient for an accurate representation of the current distribution. The main purpose of our paper is to present wavelet MoM to the electromagnetic community in a simplified way so that readers can apply this technique to their problems which may be more interesting and challenging than the one we discussed. For this purpose, we provided explicit closed-form expressions for scaling functions and wavelets which, to the best of our knowledge, have not appeared anywhere in the literature
机译:作者评论说,Goswami,Chan和Chui的论文(参见同上,第43卷,第6期,第614页,1995年)提出了一个有界区间上的半正交小波有趣地应用到一阶数值解中的应用。类积分方程。基于小波的方法的主要优点是将积分算子简化为稀疏矩阵,这对于解决大规模问题非常有价值。与本文理论部分的讨论相比,数值结果的解释有些简短和不足。尤其是,稀疏矩阵演示的示例缺乏洞察力和信念。 Goswami等。回答说,王博士显然不了解他们论文的主要目的。本文的贡献不应该通过一个具体的例子看待,而应该从整体上看。矩量法(MoM)是众所周知的,因此对于我们在本文中讨论的特定示例,即从无限长的具有较小半径的PEC圆柱体进行TM散射,11个(甚至更少)基函数就足够了准确表示当前分布。本文的主要目的是以简化的方式向电磁社区展示小波MoM,以便读者可以将这种技术应用于他们的问题,这可能比我们所讨论的问题更有趣和更具挑战性。为此,我们提供了用于缩放函数和小波的显式闭式表达式,据我们所知,它们在文献中从未出现过

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号