首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical-grid method
【24h】

Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical-grid method

机译:使用基于物理的两网格方法和规范网格方法对有损介电随机粗糙表面的波散射进行蒙特卡罗模拟

获取原文
获取原文并翻译 | 示例

摘要

In using the method of moments to solve scattering by lossy dielectric surfaces, usually a single dense grid (SDG) with 30 points per wavelength is required for accurate results. A single coarse grid (SCG) of ten points per wavelength does not give accurate results. However, the central processing unit (CPU) and memory requirements of SDG are much larger than that of SCG. In a physics-based two-grid method (PBTG) two grids are used: a dense grid and a coarse grid. The method is based on the two observations: (1) Green's function of the lossy dielectric is attenuative and (2) the free-space Green's function is slowly varying on the dense grid. In this paper, the PBTG method is combined with the banded-matrix iterative approach/canonical grid method to solve rough surface scattering problem for both TE and TM cases and also for near grazing incidence. We studied cases of dielectric permittivities as high as (25+i)/spl epsiv//sub 0/ and incidence angle up to 85/spl deg/. Salient features of the numerical results are: (1) an SCG has poorer accuracy for TM case than TE case; (2) PBTG-banded-matrix iterative approach/canonical grid BMIA/CAG method speeds up CPU and preserves the accuracy; it has an accuracy comparable to single dense grid and yet has CPU comparable to single coarse grid; (3) PBTG-BMIA/CAG gives accurate results for emissivity calculations and also for low grazing backscattering problems (LGBA); and (4) the computational complexity and the memory requirements of the present algorithm are O(N log(N)) and O(N), respectively, where N is the number of surface unknowns on the coarse grid.
机译:在使用矩量法来解决有损介电表面的散射问题时,通常需要一个单个密集网格(SDG),每个波长30个点才能获得准确的结果。每个波长只有十个点的单个粗网格(SCG)无法给出准确的结果。但是,SDG的中央处理器(CPU)和内存要求比SCG更大。在基于物理学的两网格方法(PBTG)中,使用了两个网格:密集网格和粗糙网格。该方法基于两个观察结果:(1)有损耗电介质的格林函数是衰减的;(2)自由空间格林函数在密集网格上缓慢变化。本文将PBTG方法与带矩阵迭代方法/规范网格方法相结合,以解决TE和TM情况以及近掠入射的粗糙表面散射问题。我们研究了介电常数高达(25 + i)/ spl epsiv // sub 0 /和入射角高达85 / spl deg /的情况。数值结果的显着特征是:(1)SCG在TM情况下的准确度比TE情况差; (2)PBTG带矩阵迭代方法/规范网格BMIA / CAG方法可加快CPU速度并保持精度;它的精度可与单个密集网格相媲美,而CPU可与单个粗网格相媲美; (3)PBTG-BMIA / CAG可为发射率计算和低掠射后向散射问题(LGBA)提供准确的结果; (4)本算法的计算复杂度和存储需求分别为O(N log(N))和O(N),其中N为粗网格上表面未知数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号