首页> 外文期刊>IEEE Transactions on Antennas and Propagation >A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution
【24h】

A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution

机译:基于模因差分演化的多目标子阵列线性天线阵列设计方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a multi-objective optimization approach to subarrayed linear antenna arrays design. We define this problem as a bi-objective one. We consider two objective functions for directivity maximization and sidelobe level minimization. Memetic algorithms (MAs) are hybrid algorithms that combine the benefits of a global search Evolutionary Algorithm (EA) with a local search method. In this paper, we introduce a new memetic multi-objective evolutionary algorithm namely the memetic generalized differential evolution (MGDE3). This algorithm is a memetic extension of the popular generalized differential evolution (GDE3) algorithm. Another popular MOEA is the nondominated sorting genetic algorithm-II (NSGA-II). MGDE3, GDE3 and NSGA-II are applied to the synthesis of uniform and nonuniform subarrayed linear arrays, providing an extensive set of solutions for each design case. Depending on the desired array characteristics, the designer can select the most suitable solution. The results of the proposed method are compared with those reported in the literature, indicating the advantages and applicability of the multi-objective approach.
机译:在本文中,我们为子阵列线性天线阵列设计提出了一种多目标优化方法。我们将此问题定义为一个双目标的问题。我们考虑方向性最大化和旁瓣电平最小化的两个目标函数。模因算法(MA)是混合算法,将全局搜索进化算法(EA)的优点与本地搜索方法结合在一起。在本文中,我们介绍了一种新的模因多目标进化算法,即模因广义差分进化(MGDE3)。该算法是流行的广义差分进化(GDE3)算法的模因扩展。另一个流行的MOEA是非支配排序遗传算法-II(NSGA-II)。 MGDE3,GDE3和NSGA-II用于合成均匀和非均匀子阵列线性阵列,为每种设计案例提供了广泛的解决方案。根据所需的阵列特性,设计人员可以选择最合适的解决方案。将该方法的结果与文献报道进行了比较,表明了多目标方法的优势和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号