首页> 外文期刊>Algorithmica >FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment
【24h】

FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment

机译:FastLSA:用于序列比对的快速,线性空间,并行和顺序算法

获取原文
获取原文并翻译 | 示例

摘要

Sequence alignment is a fundamental operation for homology search in bioinformatics. For two DNA or protein sequences of length m and n, full-matrix (FM), dynamic programming alignment algorithms such as Needleman-Wunsch and Smith-Waterman take O(m x n) time and use a possibly prohibitive O(m x n) space. Hirschberg's algorithm reduces the space requirements to O(min(m, n)), but requires approximately twice the number of operations required by the FM algorithms. The Fast Linear-Space Alignment (FastLSA) algorithm adapts to the amount of space available by trading space for operations. FastLSA can effectively adapt to use either linear or quadratic space, depending on the specific machine. Our experiments show that, in practice, due to memory caching effects, FastLSA is always as fast or faster than the Hirschberg and FM algorithms. To improve the performance of FastLSA further, we have parallelized it using a simple but effective form of wavefront parallelism. Our experimental results show that Parallel FastLSA exhibits good speedups, almost linear for eight processors or less, and also that the efficiency of Parallel FastLSA increases with the size of the sequences that are aligned. Consequently, parallel and sequential FastLSA can be flexibly and effectively used with high performance in situations where space and the number of parallel processors can vary greatly.
机译:序列比对是生物信息学中同源性搜索的基本操作。对于长度为m和n的两个DNA或蛋白质序列,全矩阵(FM),诸如Needleman-Wunsch和Smith-Waterman之类的动态编程比对算法需要O(m x n)时间,并可能使用禁止的O(m x n)空间。 Hirschberg的算法将空间需求降低到O(min(m,n)),但所需的运算次数大约是FM算法所需的两倍。快速线性空间对齐(FastLSA)算法适用于交易空间来进行操作的可用空间量。 FastLSA可以有效地适应使用线性空间或二次空间,具体取决于特定的计算机。我们的实验表明,实际上,由于内存缓存的影响,FastLSA总是比Hirschberg和FM算法快或快。为了进一步提高FastLSA的性能,我们使用一种简单但有效的波阵面并行化形式对其进行了并行处理。我们的实验结果表明,并行FastLSA表现出良好的加速比,对于八个处理器或更少的处理器,几乎是线性的,并且并行FastLSA的效率随比对序列的大小而增加。因此,在空间和并行处理器数量可能相差很大的情况下,可以高效地灵活高效地并行和顺序使用FastLSA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号