首页> 外文期刊>Algorithmica >Reducing Tile Complexity for the Self-assembly of Scaled Shapes Through Temperature Programming
【24h】

Reducing Tile Complexity for the Self-assembly of Scaled Shapes Through Temperature Programming

机译:通过温度编程降低瓷砖形状自组装的复杂性

获取原文
获取原文并翻译 | 示例

摘要

This paper concerns the self-assembly of scaled-up versions of arbitrary finite shapes. We work in the multiple temperature model that was introduced by Ag-garwal, Cheng, Goldwasser, Kao, and Schweller (Complexities for Generalized Models of Self-Assembly, SIAM J. Comput. 2005). The multiple temperature model is a natural generalization of Winfree's abstract tile assembly model, where the temperature of a tile system is allowed to be shifted up and down as self-assembly proceeds. We first exhibit two constant-size tile sets in which scaled-up versions of arbitrary shapes self-assemble. Our first tile set has the property that each scaled shape self-assembles via an asymptotically "Kolmogorov-optimum" temperature sequence but the scaling factor grows with the size of the shape being assembled. In contrast, our second tile set assembles each scaled shape via a temperature sequence whose length is proportional to the number of points in the shape but the scaling factor is a constant independent of the shape being assembled. We then show that there is no constant-size tile set that can uniquely assemble an arbitrary (non-scaled, connected) shape in the multiple temperature model, i.e., the scaling is necessary for self-assembly. This answers an open question of Kao and Schweller (Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 571-580, 2006), who asked whether such a tile set exists.
机译:本文涉及任意有限形状的按比例放大版本的自组装。我们在由Ag-garwal,Cheng,Goldwasser,Kao和Schweller提出的多重温度模型中工作(自组装广义模型的复杂性,SIAM J. Comput。2005)。多重温度模型是Winfree抽象瓷砖装配模型的自然概括,其中,随着自装配的进行,允许瓷砖系统的温度上下移动。我们首先展示两个恒定大小的图块集,其中任意形状的按比例放大版本会自动组装。我们的第一个图块集具有以下特性:每个缩放的形状都通过渐近的“ Kolmogorov-optimum”温度序列自组装,但是缩放系数随所组装形状的大小而增长。相反,我们的第二个图块集通过温度序列来组装每个缩放的形状,该温度序列的长度与形状中的点数成比例,但是缩放因子是一个常数,与要组装的形状无关。然后我们表明,没有恒定大小的图块集可以在多温度模型中唯一地组装任意形状(非缩放,连接),即自组装需要缩放。这回答了Kao和Schweller(第17届ACM-SIAM离散算法年度研讨会论文集(SODA 2006),第571-580页,2006)的公开问题,他们问是否存在这样的图块集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号