首页> 外文期刊>Algorithmica >Optimal Static and Self-Adjusting Parameter Choices for the (1 + (λ, λ)) Genetic Algorithm
【24h】

Optimal Static and Self-Adjusting Parameter Choices for the (1 + (λ, λ)) Genetic Algorithm

机译:(1 +(λ,λ))遗传算法的最佳静态和自调整参数选择

获取原文

摘要

Abstract The $$(1+(lambda ,lambda ))$$ ( 1 + ( λ , λ ) )  genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is $$O(max {n log (n) / lambda , lambda n})$$ O ( max { n log ( n ) / λ , λ n } ) for any offspring population size $$lambda in {1,ldots ,n}$$ λ ∈ { 1 , … , n } (and the other parameters suitably dependent on $$lambda $$ λ ) and it was shown experimentally that a self-adjusting choice of $$lambda $$ λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on $$lambda $$ λ as in Doerr et al. (2015), we improve the previous runtime bound to $$O(max {n log (n) / lambda , n lambda log log (lambda )/log (lambda )})$$ O ( max { n log ( n ) / λ , n λ log log ( λ ) / log ( λ ) } ) . This expression is minimized by a value of $$lambda $$ λ slightly larger than what the previous result suggested and gives an expected optimization time of $$Oleft( n sqrt{log (n) log log log (n) / log log (n)}right) $$ O n log ( n ) log log log ( n ) / log log ( n ) . We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. (2015) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.
机译:摘要Doerr等人提出的$$(1+(lambda,lambda))$$(1 +(λ,λ))遗传算法。 (Theor Comput Sci 567:87–104,2015)是为数不多的几个例子之一,可以通过使用交叉严格证明预期的优化时间超恒定加速。证明该算法在OneMax上的预期优化时间为$$ O(max {n log(n)/ lambda,lambda n})$$ O(max {n log(n)/λ,λn})对于{1,ldots,n} $$λ∈{1,…,n}中的任何后代种群大小$$ lambda(以及其他参数取决于$$ lambda $$λ),实验证明了一个自我调整$$ lambda $$λ会导致更好的,最可能的线性运行时间。在这项工作中,我们将更精确地研究优化时间如何取决于参数选择,从而得出以下有关如何以静态和动态方式最佳选择种群大小,突变概率和交叉偏倚的结果。对于突变概率和交叉偏倚,取决于Doerr等人的$$ lambda $$λ。 (2015),我们改进了先前的运行时绑定到$$ O(max {n log(n)/ lambda,n lambda log log(lambda)/ log(lambda)})$$ O(max {n log(n) /λ,nλlog log(λ)/ log(λ)})。该表达式的值由$$ lambda $$λ最小,该值比先前的结果建议的稍大,并且给出了$ Oleft(n sqrt {log(n)log log log(n)/ log log( n)} right)$$ O n log(n)日志log log(n)/ log log(n)。我们表明,在后代种群的三维参数空间,突变概率和交叉偏倚中没有静态选择会给出渐近更好的运行时间。我们还证明了Doerr等人建议的自调整参数选择。 (2015)胜过所有静态选择,得出了线性预期运行时间。在所有可能的参数选择中,这是渐近最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号