首页> 外文期刊>Algorithmica >Semi-Group Range Sum Revisited: Query-Space Lower Bound Tightened
【24h】

Semi-Group Range Sum Revisited: Query-Space Lower Bound Tightened

机译:再谈半组范围总和:紧缩查询空间下界

获取原文
获取原文并翻译 | 示例

摘要

Let be a set of n elements drawn from a commutative semigroup. Given two integers x, y satisfying , a range sum query returns the sum of the elements , ,..., . The goal of indexing is to store in a data structure so that all such queries can be answered efficiently in the worst case. This paper proves a new lower bound in the semigroup model on the tradeoff between space and query time for the above problem. We show that, if the query time needs to be at most an integer t, a structure must use space. The bound is asymptotically tight for every , and is matched by an existing structure. Previously, the best lower bounds either had a substantially smaller non-linear factor (Yao in Space-time tradeoff for answering range queries (extended abstract). In: STOC, pp. 128-136, 1982), or were tight only for constant t (Alon and Schieber in Optimal preprocessing for answering on-line product queries. Technical Report TR 71/87, Tel-Aviv University, 1987). Our lower bound is asymptotically tight bidirectionally, namely, it also answers the following question: if the space needs to be bounded by an integer m, what is the best query time achievable? The techniques behind our lower bound are drastically different from those of Yao (Space-time tradeoff for answering range queries (extended abstract). In: STOC, pp. 128-136, 1982) and Alon and Schieber (Optimal preprocessing for answering on-line product queries. Technical Report TR 71/87, Tel-Aviv University, 1987), and reveal new insight on the characteristics of the problem.
机译:设从交换半群中得出的n个元素的集合。给定两个满足的整数x,y,范围和查询将返回元素,,...,的总和。索引的目标是存储在数据结构中,以便在最坏的情况下可以有效地回答所有此类查询。本文证明了在半群模型中关于上述问题的空间和查询时间之间的权衡的新下界。我们表明,如果查询时间最多需要为整数t,则结构必须使用空间。每个的边界渐近严格,并与现有结构匹配。以前,最佳下界要么具有较小的非线性因子(Yao在时空权衡中用于回答范围查询(扩展摘要),请参见:STOC,第128-136页,1982年),或者仅对于常数严格t(Alon和Schieber在“最佳预处理,用于回答在线产品查询。技术报告TR 71/87,特拉维夫大学,1987年”)。我们的下界是双向渐近的,也就是说,它还回答了以下问题:如果空间需要以整数m为界,那么可达到的最佳查询时间是多少?下界背后的技术与Yao的技术(用于回答范围查询的时空权衡(扩展摘要)。参见:STOC,第128-136页,1982年)以及Alon和Schieber的技术(针对在以下情况下进行回答的最佳预处理)完全不同。产品线查询(技术报告TR 71/87,特拉维夫大学,1987年),并揭示了有关问题特征的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号