首页> 外文期刊>Algorithmica >Near-Optimal Asymmetric Binary Matrix Partitions
【24h】

Near-Optimal Asymmetric Binary Matrix Partitions

机译:接近最佳的非对称二元矩阵分区

获取原文
获取原文并翻译 | 示例

摘要

We study the asymmetric binary matrix partition problem that was recently introduced by Alon et al. (Proceedings of the 9th Conference on Web and Internet Economics (WINE), pp 1-14, 2013). Instances of the problem consist of an binary matrix A and a probability distribution over its columns. A partition scheme consists of a partition for each row i of A. The partition acts as a smoothing operator on row i that distributes the expected value of each partition subset proportionally to all its entries. Given a scheme B that induces a smooth matrix , the partition value is the expected maximum column entry of . The objective is to find a partition scheme such that the resulting partition value is maximized. We present a 9/10-approximation algorithm for the case where the probability distribution is uniform and a -approximation algorithm for non-uniform distributions, significantly improving results of Alon et al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear programming and duality arguments. In our second result we exploit a nice relation of the problem to submodular welfare maximization.
机译:我们研究了Alon等人最近引入的非对称二进制矩阵分配问题。 (第9届网络和互联网经济学会议论文集,WINE,2013年1月14日)。问题的实例包括一个二进制矩阵A及其各列的概率分布。分区方案由A的每行i组成的分区组成。该分区充当行i上的平滑运算符,该运算符将每个分区子集的期望值按比例分配给其所有条目。给定方案B产生光滑矩阵,分区值是期望的最大列项。目的是找到一种分区方案,以使所得的分区值最大化。对于概率分布均匀的情况,我们提出了一种9/10近似算法;对于非均匀分布的情况,我们提出了一种-近似算法,这大大改善了Alon等人的结果。尽管我们的第一个算法是组合的(并且非常简单),但是分析是基于线性规划和对偶参数的。在我们的第二个结果中,我们利用了问题与次模块福利最大化的良好关系。

著录项

  • 来源
    《Algorithmica》 |2018年第1期|48-72|共25页
  • 作者单位

    Univ Jeddah, Fac Comp & Informat Technol, Jeddah, Saudi Arabia;

    Univ Patras, Comp Technol Inst & Press Diophantus, Rion 26504, Greece|Univ Patras, Dept Comp Engn & Informat, Rion 26504, Greece;

    Univ Patras, Dept Comp Engn & Informat, Rion 26504, Greece;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号