首页> 外文期刊>Algorithmica >A Polynomial Time Algorithm for Read-Once Certification of Linear Infeasibility in UTVPI Constraints
【24h】

A Polynomial Time Algorithm for Read-Once Certification of Linear Infeasibility in UTVPI Constraints

机译:UTVPI约束中线性缺失性的多项式时间算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the design and analysis of polynomial time algorithms for two problems associated with a linearly infeasible system of Unit Two Variable Per Inequality (UTVPI) constraints, viz., (a) the read-once refutation (ROR) problem, and (b) the literal-once refutation (LOR) problem. Recall that a UTVPI constraint is a linear relationship of the form: aiboldxi/bold+ajboldxjbij/bold, where ai,aj{0,1,-1}. A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be represented in matrix form as: Aboldxb/bold. These constraints find applications in a host of domains including but not limited to operations research and program verification. For the linear system Aboldxb/bold, a refutation is a collection of m variables y=[y1,y2,...,ym]TR+m/mml:msubsup, such that yboldA/bold=0, yboldb/bold0. Such a refutation is guaranteed to exist for any infeasible linear program, as per Farkas' lemma. The refutation is said to be read-once, if each mml:msubyi{0,1}. Read-once refutations are incomplete in that their existence is not guaranteed for infeasible linear programs, in general. Indeed they are not complete, even for UCSs. Hence, the question of whether an arbitrary UCS has an ROR is both interesting and non-trivial. In this paper, we reduce this problem to the problem of computing a minimum weight perfect matching (MWPM) in an undirected graph. This transformation results in an algorithm that runs in in time polynomial in the size of the input UCS. Additionally, we design a polynomial time algorithm (also via a reduction to the MWPM problem) for a variant of read-once resolution called literal-once resolution. The advantage of reducing our problems to the MWPM problem is that we can leverage recent advances in algorithm design for the MWPM problem towards solving the ROR and LOR problems in UCSs. Finally, we show that another variant of read-once refutation problem called the non-literal read-once refutation (NLROR) problem is NP-complete in UCSs.
机译:在本文中,我们讨论了多项式时间算法的设计和分析,两个问题与单位的单位两个变量(UTVPI)约束(UTVPI)约束,VIZ相关的两个问题。,(a)读取一度的驳斥(ROR)问题, (b)文字一度驳回(lor)问题。回想一下,UTVPI约束是形式的线性关系:AI <粗体> xi + aj <粗体> xjbij ,其中ai,aj {0,1,-1}。这种约束的结合称为UTVPI约束系统(UCS),并且可以以矩阵形式表示为:<粗体> Xb 。这些约束在一系列域中查找应用程序,包括但不限于运营研究和程序验证。对于线性系统A <粗体> XB ,recutile是m变量y = [y1,y2,...,ym] tr + m ,使得y <粗体> a = 0,y <粗体> b <0。根据Farkas的LEMMA,可以保证这种驳斥是否存在于任何不可行的线性程序。据说,据说是读取的,如果每个 yi {0,1}。读一次透露不完整,因为它们的存在对于不可行的线性计划,通常不会保证。事实上,即使是UCSS,他们也没有完成。因此,任意UCS是否具有ROR的问题既有趣又非琐样。在本文中,我们将该问题减少了在一个无向图中计算最小权重完美匹配(MWPM)的问题。该转换导致算法在输入UC的大小的时间多项式中运行。另外,我们设计了多项式时间算法(也通过降低到MWPM问题),用于称为文字分辨率的读取分辨率的变体。将问题缩短到MWPM问题的优势是,我们可以利用算法设计算法设计,为解决UCSS中的ROR和LOR问题的MWPM问题。最后,我们表明,另一个称为非文字读取份额驳斥(NLROR)问题的另一个读取次级驳斥问题的变体是在UCSS中的NP-Complete。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号