首页> 外文期刊>Algorithmica >A Polynomial Time Algorithm for Read-Once Certification of Linear Infeasibility in UTVPI Constraints
【24h】

A Polynomial Time Algorithm for Read-Once Certification of Linear Infeasibility in UTVPI Constraints

机译:UTVPI约束中线性不可行的一次性证明的多项式时间算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the design and analysis of polynomial time algorithms for two problems associated with a linearly infeasible system of Unit Two Variable Per Inequality (UTVPI) constraints, viz., (a) the read-once refutation (ROR) problem, and (b) the literal-once refutation (LOR) problem. Recall that a UTVPI constraint is a linear relationship of the form: aiboldxi/bold+ajboldxjbij/bold, where ai,aj{0,1,-1}. A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be represented in matrix form as: Aboldxb/bold. These constraints find applications in a host of domains including but not limited to operations research and program verification. For the linear system Aboldxb/bold, a refutation is a collection of m variables y=[y1,y2,...,ym]TR+m/mml:msubsup, such that yboldA/bold=0, yboldb/bold0. Such a refutation is guaranteed to exist for any infeasible linear program, as per Farkas' lemma. The refutation is said to be read-once, if each mml:msubyi{0,1}. Read-once refutations are incomplete in that their existence is not guaranteed for infeasible linear programs, in general. Indeed they are not complete, even for UCSs. Hence, the question of whether an arbitrary UCS has an ROR is both interesting and non-trivial. In this paper, we reduce this problem to the problem of computing a minimum weight perfect matching (MWPM) in an undirected graph. This transformation results in an algorithm that runs in in time polynomial in the size of the input UCS. Additionally, we design a polynomial time algorithm (also via a reduction to the MWPM problem) for a variant of read-once resolution called literal-once resolution. The advantage of reducing our problems to the MWPM problem is that we can leverage recent advances in algorithm design for the MWPM problem towards solving the ROR and LOR problems in UCSs. Finally, we show that another variant of read-once refutation problem called the non-literal read-once refutation (NLROR) problem is NP-complete in UCSs.
机译:在本文中,我们讨论了多项线性时间算法的设计和分析,该算法与两个单位不等式线性可变系统(UTVPI)约束相关的两个问题,即(a)一次反驳(ROR)问题, (b)一次字面反驳(LOR)问题。回想一下,UTVPI约束是以下形式的线性关系:ai xi + aj xjbij ,其中ai,aj {0,1,-1}。这种约束的结合称为UTVPI约束系统(UCS),可以矩阵形式表示为:A xb 。这些约束条件可在许多领域中找到应用程序,包括但不限于运筹学和程序验证。对于线性系统A xb ,反驳是m个变量y = [y1,y2,...,ym] TR + m 的集合,使得y A = 0,y b <0。根据Farkas的引理,对于任何不可行的线性程序,都可以保证存在这种反驳。如果每个 yi {0,1},则该引用被视为一次读取。通常,一次读取式的反驳是不完整的,因为不能保证线性程序不可行。实际上,即使对于UCS,它们也不完整。因此,任意UCS是否具有ROR的问题既有趣又不平凡。在本文中,我们将这个问题简化为在无向图中计算最小权重完美匹配(MWPM)的问题。该变换导致算法以输入UCS的大小按时间多项式运行。此外,我们设计了一次多项式时间算法(也通过减少MWPM问题),以实现一次读取分辨率的变体,称为立即一次分辨率。将我们的问题简化为MWPM问题的好处是,我们可以利用MWPM问题的算法设计的最新进展来解决UCS中的ROR和LOR问题。最后,我们证明了一次阅读反驳问题的另一个变体,即非文字一次反驳(NLROR)问题,在UCS中是NP完全的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号