首页> 外文期刊>Algorithmica >A Multiplicative Weight Updates Algorithm for Packing and Covering Semi-infinite Linear Programs
【24h】

A Multiplicative Weight Updates Algorithm for Packing and Covering Semi-infinite Linear Programs

机译:用于包装和覆盖半无限线性程序的乘法权重算法

获取原文

摘要

We consider the following semi-infinite linear programming problems: max (resp., min) cTx s.t. yTAix+(di)Txbi (resp., yTAix+(di)Txbi), for all yYi, for i=1,...,N, where YiR+mare given compact convex sets and AiR+mixn b=(b1,...bN)R+N, diR+n, and cR+n are given non-negative matrices and vectors. This general framework is useful in modeling many interesting problems. For example, it can be used to represent a sub-class of robust optimization in which the coefficients of the constraints are drawn from convex uncertainty sets Yi, and the goal is to optimize the objective function for the worst case choice in each Yi. When the uncertainty sets Yi are ellipsoids, we obtain a sub-class of second-order cone programming. We show how to extend the multiplicative weights update method to derive approximation schemes for the above packing and covering problems. When the sets Yi are simple, such as ellipsoids or boxes, this yields substantial improvements in running time over general convex programming solvers. We also consider the mixed packing/covering problem, in which both packing and covering constraints are given, and the objective is to find an approximately feasible solution.
机译:我们考虑以下半无限线性编程问题:最大(RESP。,MIN)CTX S.T. ytaix +(di)txbi(yth。,ytaix +(di)txbi),对于所有yyi,对于i = 1,...,n,其中yir + m <给定小型凸起组和空气+ mixn b =(b1, r + n <>,dir + n <>和cr + n是非负矩阵和向量的。这一综合框架对于建模许多有趣的问题是有用的。例如,它可用于表示稳健优化的子类,其中约束的系数从凸不确定性集合绘制,并且目标是优化每个yi中最坏情况选择的目标函数。当不确定性集yi是椭圆形时,我们获得了一类二阶锥编程。我们展示了如何扩展乘法权重更新方法,以导出上述包装和覆盖问题的近似方案。当集合yi很简单时,例如椭圆形或盒子,这在一般凸编程求解器上运行时间产生了大量的改进。我们还考虑混合包装/覆盖问题,其中给出了包装和覆盖限制,目标是找到近似可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号