首页> 外文期刊>Algorithmica >A Multiplicative Weight Updates Algorithm for Packing and Covering Semi-infinite Linear Programs
【24h】

A Multiplicative Weight Updates Algorithm for Packing and Covering Semi-infinite Linear Programs

机译:包装和覆盖半无限线性程序的乘性权重更新算法

获取原文

摘要

We consider the following semi-infinite linear programming problems: max (resp., min) cTx s.t. yTAix+(di)Txbi (resp., yTAix+(di)Txbi), for all yYi, for i=1,...,N, where YiR+mare given compact convex sets and AiR+mixn b=(b1,...bN)R+N, diR+n, and cR+n are given non-negative matrices and vectors. This general framework is useful in modeling many interesting problems. For example, it can be used to represent a sub-class of robust optimization in which the coefficients of the constraints are drawn from convex uncertainty sets Yi, and the goal is to optimize the objective function for the worst case choice in each Yi. When the uncertainty sets Yi are ellipsoids, we obtain a sub-class of second-order cone programming. We show how to extend the multiplicative weights update method to derive approximation schemes for the above packing and covering problems. When the sets Yi are simple, such as ellipsoids or boxes, this yields substantial improvements in running time over general convex programming solvers. We also consider the mixed packing/covering problem, in which both packing and covering constraints are given, and the objective is to find an approximately feasible solution.
机译:我们考虑以下半无限线性规划问题:max(resp。,min)cTxs.t。 yTAix +(di)Txbi(分别为yTAix +(di)Txbi),对于所有yYi,对于i = 1,...,N,其中YiR + m <给出紧凸集,AiR + mixn b =(b1, ... bN)R + N>,diR + n <和cR + n被赋予非负矩阵和向量。这个通用框架可用于对许多有趣的问题进行建模。例如,它可以用来表示鲁棒优化的子类,其中约束的系数是从凸不确定性集合Yi得出的,目标是针对每个Yi中最坏情况的选择优化目标函数。当不确定性集Yi为椭球时,我们获得了二阶锥规划的子类。我们展示了如何扩展乘性权重更新方法,以得出上述打包和覆盖问题的近似方案。当集合Yi很简单时,例如椭圆形或盒子,与常规的凸规划求解器相比,这将大大提高运行时间。我们还考虑了混合包装/覆盖问题,其中给出了包装和覆盖约束,目的是找到一个近似可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号