首页> 外文期刊>Algorithmica >Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs
【24h】

Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs

机译:线性时间算法,用于在退化图中找到固定大小的支配集

获取原文
获取原文并翻译 | 示例

摘要

There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs.
机译:关于固定参数算法的大量文献涉及各种图族的支配集问题。在本文中,我们给出了一个k O(dk) n时间算法,用于在具有n个顶点的d退化图中找到最大为k的支配大小集。这证明了对于退化图,控制集问题是固定参数可处理的。对于不包含K h 作为拓扑次要图的图,我们针对运行时间(O(h)) hk n给出了改进的算法。对于K h -minor-free的图,运行时间进一步减少为(O(log h)) hk / 2 n。图的顶点数量呈线性的固定参数可处理算法以前仅对于平面图是已知的。对于上面讨论的图族,还解决了找到给定长度的诱导周期的问题。对于每个固定的H和k,我们表明,如果具有n个顶点的无H次要图G包含大小为k的诱导周期,则可以在O(n)预期时间以及O( nlog n)最坏情况下的时间。对于建立更一般的退化图族的线性时间算法的(不可能)陈述,一些结果被陈述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号