首页> 外文期刊>Algorithmica >Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-Assembly
【24h】

Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-Assembly

机译:算法自组装的紧凑型容错方法的功能和局限性

获取原文
获取原文并翻译 | 示例

摘要

Winfree’s pioneering work led the foundations in the area of error-reduction in algorithmic self-assembly (Winfree and Bekbolatov in DNA Based Computers 9, LNCS, vol. 2943, pp. 126–144, [2004]), but the construction resulted in increase of the size of assembly. Reif et al. (Nanotechnol. Sci. Comput. 79–103, [2006]) contributed further in this area with compact error-resilient schemes that maintained the original size of the assemblies, but required certain restrictions on the Boolean functions to be used in the algorithmic self-assembly. It is a critical challenge to improve these compact error resilient schemes to incorporate arbitrary Boolean functions, and to determine how far these prior results can be extended under different degrees of restrictions on the Boolean functions. In this work we present a considerably more complete theory of compact error-resilient schemes for algorithmic self-assembly in two and three dimensions. In our error model, ε is defined to be the probability that there is a mismatch between the neighboring sides of two juxtaposed tiles and they still stay together in the equilibrium. This probability is independent of any other match or mismatch and hence we term this probabilistic model as the independent error model. In our model all the error analysis is performed under the assumption of kinetic equilibrium. First we consider two-dimensional algorithmic self-assembly. We present an error correction scheme for reduction of errors from ε to ε 2 for arbitrary Boolean functions in two dimensional algorithmic self-assembly. Then we characterize the class of Boolean functions for which the error can be reduced from ε to ε 3, and present an error correction scheme that achieves this reduction. Then we prove ultimate limits on certain classes of compact error resilient schemes: in particular we show that they can not provide reduction of errors from ε to ε 4 is for any Boolean functions. Further, we develop the first provable compact error resilience schemes for three dimensional tiling self-assemblies. We also extend the work of Winfree on self-healing in two-dimensional self-assembly (Winfree in Nanotechnol. Sci. Comput. 55–78, [2006]) to obtain a self-healing tile set for three-dimensional self-assembly. A preliminary version of this paper was published in DNA12 [22].
机译:Winfree的开拓性工作为减少算法自组装中的错误奠定了基础(DNA式计算机,LNCS,第2943卷,第126-144页,[2004]中的Winfree和Bekbolatov),但最终导致了装配尺寸的增加。 Reif等。 (Nanotechnol。Sci。Comput。79–103,[2006])在这一领域进一步做出了贡献,它采用了紧凑的具有弹性的防错方案,该方案保持了程序集的原始大小,但是需要对算法自身使用的布尔函数进行某些限制-部件。改进这些紧凑的容错性方案以合并任意布尔函数,并确定在对布尔函数的不同程度的限制下,可以将这些现有结果扩展到多远,这是一个严峻的挑战。在这项工作中,我们在二维和三维中提出了一种用于算法自组装的紧凑型防错方案的相当完整的理论。在我们的误差模型中,ε定义为两个并列的瓷砖的相邻边之间存在不匹配且它们仍保持平衡状态的概率。该概率独立于任何其他匹配或不匹配,因此我们将此概率模型称为独立误差模型。在我们的模型中,所有误差分析都是在动力学平衡的假设下进行的。首先,我们考虑二维算法自组装。针对二维算法自组装中的任意布尔函数,我们提出了一种从ε到ε 2 的误差减少方案。然后,我们描述了可以将误差从ε减少到ε 3 的布尔函数类,并提出了实现该减少的错误校正方案。然后,我们证明了某些类别的紧致错误恢复方案的极限:特别是,我们表明对于任何布尔函数,它们不能将错误从ε减少到ε 4 。此外,我们为三维平铺自组装开发了第一个可证明的紧凑型错误复原方案。我们还扩展了Winfree在二维自组装中进行自我修复的工作(Winfree in Nanotechnol。Sci。Comput。55-78,[2006]),从而获得了用于三维自组装的自修复瓷砖集。 。该论文的初步版本已发表在DNA12中[22]。

著录项

  • 来源
    《Algorithmica》 |2010年第4期|p.480-504|共25页
  • 作者

    Sudheer Sahu; John H. Reif;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号