首页> 外文期刊>Algorithmica >Self-Stabilizing Balls and Bins in Batches The Power of Leaky Bins
【24h】

Self-Stabilizing Balls and Bins in Batches The Power of Leaky Bins

机译:分批自稳定的球和垃圾桶漏水垃圾桶的力量

获取原文
获取原文并翻译 | 示例

摘要

A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where m balls (tasks) are to be distributed among n bins (servers). In a seminal work, Azar et al. (SIAM J Comput 29(1): 180-200, 1999.https://doi.org/10.1137/S0097539795288490) proposed the sequential strategy Greedy[d] for n = m. Each ball queries the load of d random bins and is allocated to a least loaded of them. Azar et al. (1999) showed that d = 2 yields an exponential improvement compared to d = 1. Berenbrink et al. (SIAM J Comput 35(6): 1350-1385, 2006.https://doi.org/10.1137/S009753970444435X) extended this to m n, showing that for d = 2 the maximal load difference is independent of m (in contrast to the d = 1 case). We propose a new variant of an infinite balls-into-bins process. In each round an expected number of lambda n new balls arrive and are distributed (in parallel) to the bins. Subsequently, each non-empty bin deletes one of its balls. This setting models a set of servers processing incoming requests, where clients can query a server's current load but receive no information about parallel requests. We study the Greedy[d] distribution scheme in this setting and show a strong self-stabilizing property: for any arrival rate lambda = lambda(n) 1, the system load is time-invariant. Moreover, for any (even super-exponential) round t, the maximum system load is (w.h.p.) O (1/1-lambda . log n/1-lambda) for d = 1 and O(log n/1-lambda) for d = 2. In particular, Greedy[2] has an exponentially smaller system load for high arrival rates.
机译:分布式计算中的一个基本问题是将请求分配到一组没有中央控制器的统一服务器。传统上,此类问题被建模为将垃圾球放入垃圾箱过程中,其中将m个垃圾球(任务)分配到n个垃圾箱(服务器)中。在开创性的工作中,Azar等人。 (SIAM J Comput 29(1):180-200,1999.https://doi.org/10.1137/S0097539795288490)提出了n = m的顺序策略Greedy [d]。每个球查询d个随机垃圾箱的负载,并分配给其中最少的负载。 Azar等。 (1999年)表明,与d = 1相比,d = 2产生了指数级的改善。 (SIAM J Comput 35(6):1350-1385,2006.https://doi.org/10.1137/S009753970444435X)将其扩展为m n,表明对于d = 2,最大载荷差与m(与d = 1的情况相反)。我们提出了无限球入仓过程的新变体。在每个回合中,预期数量的lambda n个新球到达并分发(并行)到垃圾箱。随后,每个非空仓删除其球之一。此设置对一组处理传入请求的服务器进行建模,其中客户端可以查询服务器的当前负载,但不接收有关并行请求的信息。我们在这种情况下研究了Greedy [d]分配方案,并显示出强大的自稳定特性:对于任何到达率lambda = lambda(n)<1,系统负载都是时不变的。此外,对于任何(甚至超指数)t轮,对于d = 1和O(log n / 1-lambda),最大系统负载为(whp)O(1 / 1-lambda。log n / 1-lambda)当d = 2时。特别是,对于高到达率,Greedy [2]的系统负载成倍减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号