首页> 外文期刊>Distributed Computing >Self-stabilizing repeated balls-into-bins
【24h】

Self-stabilizing repeated balls-into-bins

机译:自稳定重复球入仓

获取原文
获取原文并翻译 | 示例

摘要

We study the following synchronous process that we call repeated balls-into-bins. The process is started by assigning n balls to n bins in an arbitrary fashion. In every subsequent round, one ball is extracted from each non-empty bin according to some fixed strategy (random, FIFO, etc), and re-assigned to one of the n bins uniformly at random. We define a configuration legitimate if its maximum load is O(logn). We prove that, starting from any configuration, the process converges to a legitimate configuration in linear time and then only takes on legitimate configurations over a period of length bounded by any polynomial in n, with high probability (w.h.p.). This implies that the process is self-stabilizing and that every ball traverses all bins within O(nlog2n) rounds, w.h.p.
机译:我们研究以下同步过程,我们将其称为重复球入仓。通过以任意方式将n个球分配给n个仓来开始该过程。在随后的每一轮中,根据某个固定策略(随机,FIFO等)从每个非空箱中提取一个球,并随机将其均匀地重新分配给n个箱之一。如果最大负载为O(logn),我们定义合法的配置。我们证明,从任何配置开始,该过程在线性时间内收敛到合法配置,然后仅在以n中的任何多项式为边界的长度范围内以高概率(w.h.p.)进行合法配置。这意味着该过程是自稳定的,并且每个球都经过O(nlog2n)回合w.h.p中的所有仓位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号