首页> 外文期刊>IIE Transactions >SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series
【24h】

SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series

机译:SPSTS:使用标准化时间序列估算稳态均值的顺序过程

获取原文
获取原文并翻译 | 示例

摘要

This article presents SPSTS, an automated sequential procedure for computing point and Confidence-Interval (CI) estimators for the steady-state mean of a simulation-generated process subject to user-specified requirements for the CI coverage probability and relative half-length. SPSTS is the first sequential method based on Standardized Time Series (STS) area estimators of the steady-state variance parameter (i.e., the sum of covariances at all lags). Whereas its leading competitors rely on the method of batch means to remove bias due to the initial transient, estimate the variance parameter, and compute the CI, SPSTS relies on the signed areas corresponding to two orthonormal STS area variance estimators for these tasks. In successive stages of SPSTS, standard tests for normality and independence are applied to the signed areas to determine (ⅰ) the length of the warm-up period, and (ⅱ) a batch size sufficient to ensure adequate convergence of the associated STS area variance estimators to their limiting chi-squared distributions. SPSTS's performance is compared experimentally with that of recent batch-means methods using selected test problems of varying degrees of difficulty. SPSTS performed comparatively well in terms of its average required sample size as well as the coverage and average half-length of the final CIs.
机译:本文介绍了SPSTS,这是一种自动的顺序过程,用于计算点和置信区间(CI)估计量,用于模拟生成的过程的稳态均值,但要满足用户指定的CI覆盖率和相对半长的要求。 SPSTS是第一种基于稳态方差参数(即所有滞后协方差之和)的标准化时间序列(STS)区域估计量的顺序方法。尽管其主要竞争对手依靠批处理方法来消除由于初始瞬变引起的偏差,估计方差参数并计算CI,但SPSTS依赖于与两个正交STS区域方差估计量相对应的带符号区域来执行这些任务。在SPSTS的后续阶段中,将正常和独立性的标准测试应用于签名区域,以确定(ⅰ)预热期的长度,以及(ⅱ)足以确保相关STS区域差异充分收敛的批处理大小估计其极限卡方分布。通过选择不同难度的测试问题,将SPSTS的性能与最近的批处理方法的性能进行了实验比较。 SPSTS在平均所需样本数量以及最终配置项的覆盖率和平均半长方面表现相对较好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号