首页> 外文期刊>Affective Computing, IEEE Transactions on >Detecting Unipolar and Bipolar Depressive Disorders from Elicited Speech Responses Using Latent Affective Structure Model
【24h】

Detecting Unipolar and Bipolar Depressive Disorders from Elicited Speech Responses Using Latent Affective Structure Model

机译:使用潜在情感结构模型检测从引发的语音响应的单极和双极抑郁症

获取原文
获取原文并翻译 | 示例

摘要

Mood disorders, including unipolar depression (UD) and bipolar disorder (BD) [1] , are reported to be one of the most common mental illnesses in recent years. In diagnostic evaluation on the outpatients with mood disorder, a large portion of BD patients are initially misdiagnosed as having UD [2] . As most previous research focused on long-term monitoring of mood disorders, short-term detection which could be used in early detection and intervention is thus desirable. This work proposes an approach to short-term detection of mood disorder based on the patterns in emotion of elicited speech responses. To the best of our knowledge, there is no database for short-term detection on the discrimination between BD and UD currently. This work collected two databases containing an emotional database (MHMC-EM) collected by the Multimedia Human Machine Communication (MHMC) lab and a mood disorder database (CHI-MEI) collected by the CHI-MEI Medical Center, Taiwan. As the collected CHI-MEI mood disorder database is quite small and emotion annotation is difficult, the MHMC-EM emotional database is selected as a reference database for data adaptation. For the CHI-MEI mood disorder data collection, six eliciting emotional videos are selected and used to elicit the participants' emotions. After watching each of the six eliciting emotional video clips, the participants answer the questions raised by the clinician. The speech responses are then used to construct the CHI-MEI mood disorder database. Hierarchical spectral clustering is used to adapt the collected MHMC-EM emotional database to fit the CHI-MEI mood disorder database for dealing with the data bias problem. The adapted MHMC-EM emotional data are then fed to a denoising autoencoder for bottleneck feature extraction. The bottleneck features are used to construct a long short term memory (LSTM)-based emotion detector for generation of emotion profiles from each speech response. The emotion profiles are then clustered into emotion codewords using the K-means algorithm. Finally, a class-specific latent affective structure model (LASM) is proposed to model the structural relationships among the emotion codewords with respect to six emotional videos for mood disorder detection. Leave-one-group-out cross validation scheme was employed for the evaluation of the proposed class-specific LASM-based approaches. Experimental results show that the proposed class-specific LASM-based method achieved an accuracy of 73.33 percent for mood disorder detection, outperforming the classifiers based on SVM and LSTM.
机译:据报道,情绪障碍,包括单极抑郁(UD)和双极性障碍(BD)[1]是近年来最常见的精神疾病之一。在情绪障碍门诊患者的诊断评估中,大部分BD患者最初被误诊为具有UD [2]。作为最先前的研究,重点是情绪障碍的长期监测,因此可以在早期检测和干预中使用的短期检测是理想的。这项工作提出了一种基于引发语音反应情绪的模式的情绪障碍的短期检测方法。据我们所知,目前BD和UD之间的歧视没有短期检测数据库。这项工作收集了由多媒体人机通信(MHMC)实验室(MHMC)实验室(MHMC)实验室收集的情绪数据库(MHMC-EM)以及由台湾的Chi-Mei Medical Centre收集的情绪障碍数据库(Chi-Mei)收集了两个数据库。由于收集的Chi-Mei情绪障碍数据库非常小而情感注释难以困难,因此选择MHMC-EM情绪数据库作为数据适应的参考数据库。对于Chi-Mei情绪障碍数据收集,选择了六个引出的情绪视频,并用于引出参与者的情绪。在观看六个引出的情绪视频剪辑中的每一个后,参与者回答了临床医生提出的问题。然后使用语音响应来构建Chi-Mei情绪障碍数据库。分层谱聚类用于调整收集的MHMC-EM情绪数据库,以适应Chi-Mei情调数据库,以便处理数据偏置问题。然后将适应的MHMC-EM情绪数据送入去噪到瓶颈特征提取。瓶颈特征用于构造长期内存(LSTM)的情绪探测器,用于从每个语音响应中产生情绪概况。然后使用K-Means算法将情绪配置文件聚集到情绪码字中。最后,提出了一种特定于特定的潜在情感结构模型(Lasm),以模拟情绪码字相对于情绪障碍检测的六个情绪视频的结构关系。休假 - 一组横向验证计划用于评估拟议的基于类的基于LASM的方法。实验结果表明,拟议的基于类的基于LASM的方法为43.33%的情绪障碍检测,表现优于基于SVM和LSTM的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号