首页> 外文期刊>Affective Computing, IEEE Transactions on >Personalised, Multi-Modal, Affective State Detection for Hybrid Brain-Computer Music Interfacing
【24h】

Personalised, Multi-Modal, Affective State Detection for Hybrid Brain-Computer Music Interfacing

机译:个性化,多模态,混合脑电脑音乐互通的情感检测

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer music interfaces (BCMIs) may be used to modulate affective states, with applications in music therapy, composition, and entertainment. However, for such systems to work they need to be able to reliably detect their user's current affective state. We present a method for personalised affective state detection for use in BCMI. We compare it to a population-based detection method trained on 17 users and demonstrate that personalised affective state detection is significantly (p<0.01p<0.01) more accurate, with average improvements in accuracy of 10.2 percent for valence and 9.3 percent for arousal. We also compare a hybrid BCMI (a BCMI that combines physiological signals with neurological signals) to a conventional BCMI design (one based upon the use of only EEG features) and demonstrate that the hybrid design results in a significant (p<0.01p<0.01) 6.2 percent improvement in performance for arousal classification and a significant (p<0.01p<0.01) 5.9 percent improvement for valence classification.
机译:脑计算机音乐界面(BCMI)可用于调制情感状态,在音乐治疗,构图和娱乐中的应用。但是,对于这样的系统,他们需要能够可靠地检测其用户的当前情感状态。我们提出了一种用于BCMI的个性化情感状态检测方法。我们将其与17个用户培训的基于人口的检测方法进行比较,并证明个性化情感状态检测显着(P <0.01p <0.01)更准确,平均改善为令人效率为10.2%的10.2%和9.3%。我们还比较混合BCMI(将生理信号与神经信号的BCMI相结合)到传统的BCMI设计(一个基于仅限EEG特征的使用),并证明混合动力车设计导致显着(P <0.01p <0.01 )令人讨厌分类的性能提高6.2%(P <0.01P <0.01)的价值分类,改善了5.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号