...
首页> 外文期刊>Advancing Microelectronics >Temperature and Process Dependent Material Characterization and Multiscale Stress Evolution Analysis for Performance and Reliability Management under Chip Package Interaction
【24h】

Temperature and Process Dependent Material Characterization and Multiscale Stress Evolution Analysis for Performance and Reliability Management under Chip Package Interaction

机译:温度和过程相关的材料表征以及芯片封装相互作用下性能和可靠性管理的多尺度应力演化分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Distinct temperature and process dependent deformation behaviors under packaging temperature cycles are characterized for various packaging materials. Substrate and underfill deformations are described using Maxwell viscoelasticity model. Solder bump deformation is represented by incremental plasticity model. Anisotropic deformation in silicon and orthotropic deformation in substrate are also considered. The material deformation effects on stress evolutions during fabrication and under chip package interaction (CPI) are analyzed for a large package structure. Complex geometries spread over a large range of length scales are simulated using multi-level and multiscale sequential submodeling technique. Global package simulations show that substrate orthotropy has a significant impact on the package warpage during the assembly process. Sequential package assembly simulations are performed, to examine the residual stresses at package, bump and interconnect scales. The results show that the package material behaviors during the assembly process affect not only the residual stresses in the large package structure but also in the local bump regions and the interconnect structures. The temperature dependent material non-linear behaviors under operating conditions also affect residual stresses and carrier mobility. This work demonstrates that developing performance and reliability management strategies under CPI should consider temperature and process dependent material deformations during fabrication and packaging.
机译:在各种包装材料下,表征了在包装温度循环下不同的温度和与工艺有关的变形行为。使用Maxwell粘弹性模型描述了基底和底部填充的变形。焊料凸点变形用增量塑性模型表示。还考虑了硅的各向异性变形和衬底的正交各向异性变形。对于大型封装结构,分析了材料变形对制造过程中以及芯片封装下相互作用(CPI)应力演化的影响。使用多级和多尺度顺序子建模技术,可以模拟分布在很大长度范围内的复杂几何图形。整体封装仿真显示,在组装过程中,基板的正交性对封装翘曲有重大影响。执行顺序封装组装仿真,以检查封装,凸块和互连规模的残余应力。结果表明,在组装过程中,封装材料的行为不仅影响大封装结构中的残余应力,而且还影响局部凸块区域和互连结构。在工作条件下与温度有关的材料非线性行为也会影响残余应力和载流子迁移率。这项工作表明,在CPI下制定性能和可靠性管理策略应在制造和包装过程中考虑温度和工艺相关的材料变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号