首页> 外文期刊>Advances in Data Analysis and Classification >Infinite Dirichlet mixture models learning via expectation propagation
【24h】

Infinite Dirichlet mixture models learning via expectation propagation

机译:无限Dirichlet混合模型通过期望传播进行学习

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a novel Bayesian nonparametric clustering algorithm based on a Dirichlet process mixture of Dirichlet distributions which have been shown to be very flexible for modeling proportional data. The idea is to let the number of mixture components increases as new data to cluster arrive in such a manner that the model selection problem (i.e. determination of the number of clusters) can be answered without recourse to classic selection criteria. Thus, the proposed model can be considered as an infinite Dirichlet mixture model. An expectation propagation inference framework is developed to learn this model by obtaining a full posterior distribution on its parameters. Within this learning framework, the model complexity and all the involved parameters are evaluated simultaneously. To show the practical relevance and efficiency of our model, we perform a detailed analysis using extensive simulations based on both synthetic and real data. In particular, real data are generated from three challenging applications namely images categorization, anomaly intrusion detection and videos summarization.
机译:在本文中,我们提出了一种基于Dirichlet分布的Dirichlet过程混合的新颖贝叶斯非参数聚类算法,该算法已被证明对于建模比例数据非常灵活。想法是使混合成分的数量随着要聚类的新数据的到达而增加,使得可以在不依靠经典选择标准的情况下回答模型选择问题(即聚类数的确定)。因此,可以将所提出的模型视为无限Dirichlet混合模型。开发了期望传播推理框架以通过获取参数的完整后验分布来学习该模型。在此学习框架内,同时评估模型的复杂性和所有涉及的参数。为了显示我们模型的实际相关性和效率,我们使用了基于综合和真实数据的大量模拟,进行了详细的分析。特别是,真实数据是从三个具有挑战性的应用程序生成的,即图像分类,异常入侵检测和视频摘要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号