首页> 外文期刊>Advanced Optical Materials >Interlayer Topological Transport and Devices Based on Layer Pseudospins in Photonic Valley-Hall Phases
【24h】

Interlayer Topological Transport and Devices Based on Layer Pseudospins in Photonic Valley-Hall Phases

机译:光子谷-霍尔相中基于层伪纺丝的层间拓扑传输和装置

获取原文
获取原文并翻译 | 示例

摘要

Valley-Hall phases, first proposed in 2D materials, originate from nontrivial topologies around valleys which denote local extrema in momentum space. Since they have been extended into classical systems, their designs draw inspirations from existing quantum counterparts, and their transports show similar topological protections. In contrast, it has been recently established in acoustics that layer pseudospins in valley-Hall phases can give rise to special valley-Hall edge states with fundamentally different transport behaviors at the interfaces compared with various 2D materials. Their realization in other classical systems, such as photonics, would allow to design topological insulators beyond quantum inspirations. Here, it is shown that layer pseudospins exist in photonic valley-Hall phases, using vertically coupled designer surface plasmon crystals, a nonradiative system in open environment supporting tightly confined propagating modes. The negligible thermal and radiative losses in the structure pave the way for the direct observations of the layer pseudospins and associated topological phenomena stem from them in both real and reciprocal spaces. Photonic devices that manipulate the signals based on the layer pseudospins of the topological phases, such as layer convertors and layer-selected delay lines, are experimentally demonstrated, confirming the potential applications of the layer pseudospins as a new degree of freedom carrying information.
机译:最初在2D材料中提出的Valley-Hall相起源于围绕山谷的非平凡拓扑,这些拓扑表示动量空间中的局部极值。由于已将它们扩展到经典系统中,因此它们的设计从现有的量子对应物中汲取了灵感,并且它们的传输显示出相似的拓扑保护。相比之下,最近在声学领域已经确定,与各种2D材料相比,山谷-霍尔相中的伪自旋层可以产生特殊的山谷-霍尔边缘态,在界面处的传输行为根本不同。它们在其他经典系统(例如光子学)中的实现将允许设计超越量子灵感的拓扑绝缘体。在这里,表明使用垂直耦合的设计者表面等离激元晶体,在光子谷-霍尔相中存在层伪自旋,这是在开放环境中的无辐射系统,支持紧密受限的传播模式。结构中可忽略不计的热损失和辐射损失为直接观察层伪自旋和相关的拓扑现象在真实空间和对等空间中的直接观察铺平了道路。实验证明了基于拓扑相位的层伪自旋来操纵信号的光子设备,例如层转换器和层选择的延迟线,从而证实了层伪自旋作为一种新的携带信息的自由度的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号