首页> 外文期刊>Advanced Functional Materials >Engineered Axonal Tracts as 'Living Electrodes' for Synaptic-Based Modulation of Neural Circuitry
【24h】

Engineered Axonal Tracts as 'Living Electrodes' for Synaptic-Based Modulation of Neural Circuitry

机译:工程化的轴突区作为“活电极”,用于神经回路基于突触的调制。

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel biohybrid strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based living electrodes, which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
机译:依赖于穿透性非有机电极/电极的脑机接口和神经调节策略受到炎性异物反应的限制,这最终会降低性能。提出了一种新的生物杂交策略,其中将活的神经元,生物材料和微电极/光学技术一起使用,以提供一种基于生物学的媒介物来探测和调节神经系统的活动。使用微组织工程技术来创建基于轴突的活动电极,该电极是由神经元群体组成的柱状微结构,这些神经元群体投射在设计为伴侣向大脑输送的水凝胶内腔中的长轴突。显微注射后,轴突节段穿透至预定深度,以与局部宿主神经元进行突触整合,而眼周节段仍在符合规范的光电阵列下方外化。在这种范例中,只有生物学成分最终保留在大脑中,有可能减弱慢性异物反应。基于轴突的活动电极是使用多种神经元亚型构建的,每个亚型具有不同的能力来刺激,抑制和/或调节神经回路,这是基于突触整合唯一提供的特异性,但最终还是由大脑表面的光电组件控制。当前的工作是评估这种生物杂交界面对靶向,基于突触的神经调节的功效,以及与传统的微电子或光学基质相比的特异性,空间密度和长期保真度。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第12期|1701183.1-1701183.18|共18页
  • 作者单位

    Thomas Jefferson Univ, Dept Neurol, Philadelphia, PA 19107 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Penn State Univ, Dept Biomed Engn, Dept Mech & Nucl Engn, Computat Biomech Grp, University Pk, PA 16801 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

    Univ Penn, Perelman Sch Med, Dept Neurosurg, Ctr Brain Injury & Repair, Philadelphia, PA 19104 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biologically-mediated neuromodulation; brain-computer interfaces; living scaffolds; microtissue engineering; tissue engineering;

    机译:生物介导的神经调节;脑机接口;活动支架;微组织工程;组织工程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号