首页> 外文期刊>Advanced engineering informatics >A hybrid real-parameter genetic algorithm for function optimization
【24h】

A hybrid real-parameter genetic algorithm for function optimization

机译:用于功能优化的混合实参遗传算法

获取原文
获取原文并翻译 | 示例

摘要

One drawback of genetic algorithm is that it may spend much computation time in the encoding and decoding processes. Also, since genetic algorithm lacks hill-climbing capacity, it may easily fall in a trap and find a local minimum not the true solution. In this paper, a novel adaptive real-parameter simulated annealing genetic algorithm (ARSAGA) that maintains the merits of genetic algorithm and simulated annealing is proposed. Adaptive mechanisms are also included to insure the solution quality and to improve the convergence speed. The performance of the proposed operators has been discussed in detail and compared to other operators, and the performance of the proposed algorithm is demonstrated in 16 benchmark functions and two engineering optimization problems. Due to their versatile characteristics, these examples are suitable to test the ability of the proposed algorithm. The results indicate that the global searching ability and the convergence speed of this novel hybrid algorithm are significantly better, even though small population size is used. Also, the proposed algorithm has good application to engineering optimization problems. Hence, the proposed algorithm is efficient and improves the drawbacks of genetic algorithm.
机译:遗传算法的一个缺点是,它可能会在编码和解码过程中花费大量的计算时间。而且,由于遗传算法缺乏爬坡能力,因此很容易陷入陷阱并找到局部最小值而不是真正的解决方案。本文提出了一种新的自适应实参数模拟退火遗传算法(ARSAGA),该算法保留了遗传算法和模拟退火算法的优点。还包括自适应机制,以确保解决方案质量并提高收敛速度。已经对所提出的算子的性能进行了详细讨论,并与其他算子进行了比较,并在16个基准函数和两个工程优化问题中证明了所提出算法的性能。由于它们的通用特性,这些示例适合于测试所提出算法的能力。结果表明,即使使用较小的人口规模,该新型混合算法的全局搜索能力和收敛速度也明显更好。而且,该算法在工程优化问题上有很好的应用。因此,所提出的算法是有效的并且改善了遗传算法的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号