首页> 外文期刊>Advanced engineering informatics >Virus coevolution partheno-genetic algorithms for optimal sensor placement
【24h】

Virus coevolution partheno-genetic algorithms for optimal sensor placement

机译:病毒协同进化孤雌遗传算法可优化传感器放置

获取原文
获取原文并翻译 | 示例

摘要

A virus revolutionary partheno-genetic algorithm (VEPGA), which combined a partheno-genetic algorithm (PGA) with virus evolutionary theory, is proposed to place sensors optimally on a large space structure for the purpose of modal identification. The VEPGA is composed of a host population of candidate solutions and a virus population of substrings of host individuals. The traditional crossover and mutation operators in genetic algorithm are repealed and their functions are implemented by particular partheno-genetic operators which are suitable to combinatorial optimization problems. Three different optimal sensor placement performance index, one aim on the maximization of linear independence, one aim on the maximization of modal energy and the last is a combination of the front two indices, have been investigated. The algorithm is applied to two examples: sensor placement for a portal frame and a concrete arc dam. Results show that the proposed VEPGA outperforms the sequential reduction procedure (SRP) and PGA. The combined performance index makes an excellent compromise between the linear independence aimed index and the modal energy aimed index.
机译:提出了一种结合单性遗传算法(PGA)和病毒进化理论的病毒革命性单性遗传算法(VEPGA),以便将传感器最佳地放置在大空间结构上,以进行模式识别。 VEPGA由候选解决方案的宿主群体和宿主个体子串的病毒群体组成。废除了遗传算法中传统的交叉和变异算子,并通过适用于组合优化问题的特定单性遗传算子来实现其功能。研究了三种不同的最佳传感器放置性能指标,一种旨在最大化线性独立性,一个旨在最大化模态能量,最后一个是将前两个指标结合在一起。该算法适用于两个示例:门框的传感器位置和混凝土弧坝。结果表明,提出的VEPGA优于顺序还原程序(SRP)和PGA。综合性能指标在线性独立目标指标和模态能量目标指标之间做出了极好的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号