首页> 外文期刊>Advanced engineering informatics >A new method for expiration code detection and recognition using gabor features based collaborative representation
【24h】

A new method for expiration code detection and recognition using gabor features based collaborative representation

机译:基于gabor特征的协同表示用于过期码检测和识别的新方法。

获取原文
获取原文并翻译 | 示例

摘要

Text in images and video contains important information for visual content understanding, indexing, and recognizing. Extraction of this information involves preprocessing, localization and extraction of the text from a given image. In this paper, we propose a novel expiration code detection and recognition algorithm by using Gabor features and collaborative representation based classification. The proposed system consists of four steps: expiration code location, character isolation, Gabor features extraction and characters recognition. For expiration code detection, the Gabor energy (GE) and the maximum energy difference (MED) are extracted. The performance of the recognition algorithm is tested over three Gabor features: GE, magnitude response (MR) and imaginary response (IR). The Gabor features are classified based on collaborative representation based classifier (GCRC). To encompass all frequencies and orientations, downsampling and principal component analysis (PCA) are applied in order to reduce the features space dimensionality. The effectiveness of the proposed localization algorithm is highlighted and compared with other existing methods. Extensive testing shows that the suggested detection scheme outperforms existing methods in terms of detection rate for large image database. Also, GCRC show very competitive results compared with Gabor feature sparse representation based classification (GSRC). Also, the proposed system outperforms the nearest neighbor (NN) classifier and the collaborative representation based classification (CRC).
机译:图像和视频中的文本包含重要的信息,可帮助您理解,索引和识别视觉内容。该信息的提取涉及从给定图像中对文本进行预处理,本地化和提取。在本文中,我们利用Gabor特征和基于协作表示的分类方法,提出了一种新的到期码检测和识别算法。拟议的系统包括四个步骤:到期代码定位,字符隔离,Gabor特征提取和字符识别。为了检测到期代码,提取了Gabor能量(GE)和最大能量差(MED)。识别算法的性能在Gabor的三个特征上进行了测试:GE,幅度响应(MR)和虚数响应(IR)。 Gabor特征基于基于协作表示的分类器(GCRC)进行分类。为了涵盖所有频率和方向,应用了降采样和主成分分析(PCA),以减少特征空间的维数。突出了所提出的定位算法的有效性,并将其与其他现有方法进行了比较。大量测试表明,对于大图像数据库,建议的检测方案在检测率方面优于现有方法。此外,与Gabor特征稀疏表示基于分类(GSRC)相比,GCRC显示出非常有竞争力的结果。而且,所提出的系统优于最近邻居(NN)分类器和基于协作表示的分类(CRC)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号