首页> 外文期刊>Advanced engineering informatics >Enhanced context-based document relevance assessment and ranking for improved information retrieval to support environmental decision making
【24h】

Enhanced context-based document relevance assessment and ranking for improved information retrieval to support environmental decision making

机译:增强了基于上下文的文档相关性评估和排名,以改进信息检索以支持环境决策

获取原文
获取原文并翻译 | 示例

摘要

There is a need for enhanced context-based document relevance assessment and ranking to facilitate the retrieval of more relevant information for supporting environmental decision making. This paper proposes a new context-based relevance assessment method, which allows for enhanced context representation and context-based document relevance recognition through: (1) a context-aware and deep semantic concept indexing approach, and (2) a deep and semantically-sensitive relevance estimation approach. The proposed relevance assessment method was integrated into two widely-used document ranking models [vector space model (VSM) and statistical language model (SLM)], resulting in two improved ranking methods: (1) a context-enhanced VSM-based method, and (2) a context-enhanced SLM-based method. The two context-enhanced document ranking methods were evaluated in retrieving webpages that are relevant to transportation project environmental review. The two context-enhanced methods were compared with each other and with their provenance methods (i.e., original VSM and SLM) in terms of mean precision (MP) and mean average precision (MAP). The context-enhanced VSM-based method outperformed the context-enhanced SLM-based method on every metric. It achieved 48% MAP, 79% MP at the top 10 retrieved documents, and over 65% MP at the top 50 retrieved documents, on the testing data. It also showed significant improvement over the state-of-the-art keyword-based VSM method.
机译:需要增强基于上下文的文档相关性评估和排名,以促进检索更多相关信息以支持环境决策。本文提出了一种新的基于上下文的关联性评估方法,该方法可通过以下方式增强上下文表示和基于上下文的文档关联性识别:(1)一种上下文感知和深度语义概念索引方法,以及(2)一种深度和语义-敏感的相关性估算方法。所提出的相关性评估方法被集成到两个广泛使用的文档排名模型[向量空间模型(VSM)和统计语言模型(SLM)]中,从而产生了两种改进的排名方法:(1)基于上下文的基于VSM的增强方法; (2)基于上下文的SLM增强方法。在检索与运输项目环境审查相关的网页时,评估了两种上下文增强的文档排名方法。将这两种上下文增强的方法相互比较,并与它们的出处方法(即原始VSM和SLM)进行了比较,以表示平均精度(MP)和平均平均精度(MAP)。在每个度量标准上,基于上下文的基于VSM的方法要优于基于上下文的SLM的方法。在测试数据上,它获得了48%的MAP,在前10个检索到的文档中达到79%的MP,在前50个检索到的文档中超过65%的MP。与基于关键字的最新VSM方法相比,它也显示出显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号