首页> 外文期刊>Advanced engineering informatics >Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
【24h】

Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm

机译:基于集合机学习算法的钢筋混凝土柱的故障模式分类和承载力预测

获取原文
获取原文并翻译 | 示例

摘要

Failure mode (FM) and bearing capacity of reinforced concrete (RC) columns are key concerns in structural design and/or performance assessment procedures. The failure types, i.e., flexure, shear, or mix of the above two, will greatly affect the capacity and ductility of the structure. Meanwhile, the design methodologies for structures of different failure types will be totally different. Therefore, developing efficient and reliable methods to identify the FM and predict the corresponding capacity is of special importance for structural design/assessment management. In this paper, an intelligent approach is presented for FM classification and bearing capacity prediction of RC columns based on the ensemble machine learning techniques. The most typical ensemble learning method, adaptive boosting (AdaBoost) algorithm, is adopted for both classification and regression (prediction) problems. Totally 254 cyclic loading tests of RC columns are collected. The geometric dimensions, reinforcing details, material properties are set as the input variables, while the failure types (for classification problem) and peak capacity forces (for regression problem) are set as the output variables. The results indicate that the model generated by the AdaBoost learning algorithm has a very high accuracy for both FM classification (accuracy = 0.96) and capacity prediction (R~2 = 0.98). Different learning algorithms are also compared and the results show that ensemble learning (especially AdaBoost) has better performance than single learning. In addition, the bearing capacity predicted by the AdaBoost is also compared to that by the empirical formulas provided by the design codes, which shows an obvious superior of the proposed method. In summary, the machine learning technique, especially the ensemble learning, can provide an alternate to the conventional mechanics-driven models in structural design in this big data time.
机译:钢筋混凝土(RC)柱的故障模式(FM)和承载力是结构设计和/或性能评估程序中的关键问题。上述两个的故障类型,即弯曲,剪切或混合将极大地影响结构的容量和延展性。同时,不同故障类型的结构的设计方法将完全不同。因此,开发有效且可靠的方法来识别FM并预测相应的容量对于结构设计/评估管理是特别重要的。本文基于集合机学习技术,提出了一种智能方法,用于FM分类和RC色谱柱的轴承容量预测。用于分类和回归(预测)问题采用最​​典型的集合学习方法,自适应升压(Adaboost)算法。收集完全254个RC柱的循环加载试验。几何尺寸,增强细节,材料属性被设置为输入变量,而故障类型(分类问题)和峰值容量力(用于回归问题)被设置为输出变量。结果表明,Adaboost学习算法生成的模型对于FM分类(精度= 0.96)和容量预测(R〜2 = 0.98)具有非常高的精度。还比较了不同的学习算法,结果表明,集合学习(特别是Adaboost)的性能比单一学习更好。此外,Adaboost预测的承载力也与设计码提供的经验公式相比,这表明了所提出的方法显而易见的优势。总之,机器学习技术,尤其是集合学习,可以在这种大数据时间中提供与结构设计中的传统机械驱动模型的交替。

著录项

  • 来源
    《Advanced engineering informatics》 |2020年第8期|101126.1-101126.14|共14页
  • 作者单位

    Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education Southeast University Nanjing 211189 China Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China;

    Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education Southeast University Nanjing 211189 China;

    College of Software Engineering Southeast University Nanjing 211189 China;

    College of Engineering & Technology Southwest University Chongqing 400045 China;

    Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Ensemble learning; Adaptive boosting; Classification; Regression; Reinforced concrete; Column; Flexure; Shear;

    机译:机器学习;合奏学习;自适应提升;分类;回归;钢筋混凝土;柱子;弯曲;剪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号